Тюменский муниципальный район

Школьный этап Всероссийской олимпиады школьников по физической культуре

2016 -2017 учебный год

9-11 классов

Время выполнения - 45 минут, максимальное количество баллов -53.

ТЕОРЕТИКО-МЕТОДИЧЕСКИЙ ТУР

Инструкция по выполнению заданий

Вам предлагаются задания, соответствующие требованиям к уровню знаний учащихся общеобразовательных школ по предмету «Физическая культура».

  1. 1 . Задания в закрытой форме , то есть с предложенными вариантами ответов.

При выполнении этих заданий необходимо выбрать один из предложенных вариантов. Среди них содержатся как правильные, так и неправильные завершения, а также частично соответствующие смыслу утверждения. Правильным является только одно - то, которое наиболее полно соответствует смыслу утверждения. Выбранные варианты отмечаются, зачёркиванием соответствующего квадрата в бланке ответов: «а», «б», «в» или «г». Внимательно читайте задания и предлагаемые варианты ответов. Старайтесь не угадывать, а логически обосновывать сделанный Вами выбор. Пропускайте незнакомые задания. Это позволит сэкономить время для выполнения других заданий. Впоследствии Вы сможете вернуться к пропущенному заданию. Правильно выполненные задания этой группы оцениваются в 1 балл .

  1. Задания в открытой форме , то есть без предложенных вариантов ответов. При выполнении этих заданий необходимо самостоятельно подобрать определение, которое, завершая высказывание, образует истинное утверждение. Подобранное определение вписывайте в соответствующую графу бланка ответов. Правильно выполненные задания этой группы оцениваются в 2 балла .

3.Задания, связанные с сопоставлением , в которых необходимо сопоставить буквы с цифрами. Выбранные варианты отмечаются добавлением цифр в соответствующее поле бланков ответов. Правильно выполненные задания этой группы оцениваются в 4 балла .

4.Задание, связанное с перечислением известных Вам факторов, характеристик и тому подобное. Жюри оценивает каждую представленную позицию. Записи должны быть разборчивыми. Правильно выполненные задания этой группы оцениваются в 3 балла .

5.Задание, связанное с графическим изображением рядом с описанием элемента изобразить соответствующую пиктограмму. Правильно выполненные задания этой группы оцениваются в 3 балла .

Внимательно читайте задания и предлагаемые варианты ответов. Старайтесь не угадывать, а логически обосновывать сделанный Вами выбор. Пропускайте незнакомые задания вместо их выполнения путем догадки. Это позволит сэкономить время для выполнения других заданий. Впоследствии можно вернуться к пропущенному заданию.

Будьте внимательны, делая записи в бланке ответов. Исправления и подчистки оцениваются как неправильный ответ. Заполните шифр: разборчиво

Желаем успеха!

Контрольные вопросы по инструкции к заданию:

  • Инструкция к тесту мне…

а. Понятна.

б. Понятна отчасти.

в. Понятна не полностью.

г. Не понятна.

  1. Вы хотели бы задать вопросы для уточнения задания?

а. Да. б. Нет. в . Не знаю. г. Да, но стесняюсь.

Теоретико-методические задания школьного этапа Всероссийской олимпиады по физической культуре

для 9-11 классов

Задания в закрытой форме

  1. Источником знаний в процессе физического воспитания является…

А. информация, получаемая от преподавателя.

Б. сама двигательная деятельность.

В. компьютерная игра.

Г. изучение учебников.

Отметьте все позиции.

  1. Реализация основных принципов государственной политики в области физической культуры и спорта дает возможность осуществлять физическую подготовку человека…

А. через систему образовательных учреждений.

Б. через физкультурно-спортивные клубы.

В. непрерывно в течении жизни.

Г. самостоятельно.

  1. 3 . В раннем детском возраста, когда происходит формирование физического здоровья и практических навыков, обеспечивающих его совершенствование, физическое воспитание осуществляется в форме…

А. закаливающих процедур.

Б. обязательных занятий.

В. секционных занятий.

Г. прогулок.

Отметьте все позиции.

  1. В период обучения в общеобразовательной школе физическое воспитание осуществляется в форме….

А. обязательных уроков физической культуры.

Б. внеклассных занятий.

В. занятий в системе дополнительного образования.

Г. прогулок и дискотек.

Отметьте все позиции.

  1. Какими рекомендациями не следует руководствоваться при организации самостоятельных занятий физическим упражнениями…

А. использовать предварительно освоенные упражнения.

Б. стремиться к достижению сдвигов в короткие сроки.

В. регулировать величину нагрузки в соответствии с реакциями организма.

Г. выполнять только те упражнения, которые стимулируют рост результатов.

Отметьте все позиции.

  1. В каких видах спорта из приведенного перечня соревновались женщины во время первых зимних олимпийских игр…

А. лыжные гонки.

Б. конькобежный спорт.

В. фигурное катание.

Г. биатлон.

  1. В волейболе в заявку на матч можно включить не более…

А. 9 игроков (+ либеро).

Б. 10 игроков.

В. 12 игроков.

Г. 14 игроков.

  1. В качестве праздника Всесоюзный день физкультурника был введен…
  1. В современный Всероссийский физкультурно-спортивный комплекс « Готов к труду и обороне» включены:

А. 5 ступеней.

Б. 7 ступеней.

В. 9 ступеней.

Г. 11 ступеней.

  1. Кто из советских футболистов был признан лучшим футболистом Европы?

А. Лев Яшин.

Б. Эдуард Стрельцов.

В. Игорь Нетто.

Г. Олег Блохин.

Задания в открытой форме

  1. 11 . Сила, с которой тело действует на опору, препятствующую его свободному падению, обозначается как…
  1. Движитель гребного судна, обеспечивающий передачу усилий, развиваемых гребцом, для продвижения лодки, обеспечивается как…
  1. 13 . Основное рабочее движение, обеспечивающее продвижение пловца в воде, обозначается как…
  1. 14 . Вид основного скользящего шага, оставляющего характерный рисунок на льду, применяемый фигуристами для набора скорости или перехода от одного элемента к другому, называется…
  1. Закрытая механическая травма мягких тканей с нарушением их анатомической целостности в результате действия сил, превышающих предел эластичности этих тканей, обозначается как…
  1. 16 . Функциональные изменения в организме, обусловленные выполнением упражнений, обозначаются как тренировочный …

Задания связанные с сопоставлением

17.Сопоставьте способы организации занимающихся, обозначенные цифрами с их основными характеристиками, обозначенными буквами, вписав в бланк ответов соответствующие цифры.

  1. Фронтальный.
  2. Групповой.
  3. Индивидуальный

А. Последовательное выполнение занимающимися серий заданий на специально подготовленных местах.

Б. Одновременное выполнение несколькими занимающимися разных заданий.

В. Занимающиеся выполняют задания самостоятельно.

Г. Выполнение занимающимися одного задания, независимо от форм построения.

18.Сопоставьте имена и фамилии, представленные в списке ученых с их вкладом в совершенствование физического воспитания, обозначенном буквами, вписав в бланк ответов соответствующие цифры.

  1. Витторино де Фельтре
  2. Леонардо да Винчи.
  3. Франсуа Рабле.
  4. Ян Амос Каменский.

А. Изучил пропорции тела человека и механику его движений.

Б. Высказал ряд ценных мыслей по методике применения физических упражнений.

В. Содействовал распространению идей физического воспитания.

Г. Представил взаимосвязь умственного, нравственного и физического воспитания.

  1. Установите соответствие между физическими способностями и их определениями,обозначенными буквами, вписав в бланк ответов соответствующие цифры.
  2. « Взрывная сила».
  3. « Амортизационная сила»
  4. Общая выносливость.
  5. Силовая выносливость.

А. способность длительно выполнять работу умеренной интенсивности с использованием всего мышечного аппарата.

Б. Способность как можно быстрее закончить движение при его осуществлении с максимальной скоростью.

В. Возможности индивида, определяющие его готовность к оптимальному управлению и регулировке двигательного действия.

Г. Способность противостоять утомлению в мышечной работе, требующей значительных силовых напряжений.

Д. Способность человека удержать максимальную и субмаксимальную интенсивность работы.

Е. способность по ходу выполнения двигательного действия достигать максимальных показателей силы в возможно короткое время.

  1. Сопоставьте направленность основных разновидностей физической культуры и спорта с их принятыми обозначениями,обозначенными буквами, вписав в бланк ответов соответствующие цифры
  2. Обеспечение физической подготовленности человека.
  3. Достижение индивидуального максимума развития.
  4. Подготовка к профессиональной деятельности.
  5. Сохранение и восстановление здоровья.

Основные понятия:

А. Базовая физическая культура

В. Лечебная физическая культура

Г. Профессионально прикладная физическая культура

Задания, связанные с перечислением

  1. Перечислите известные Вам показатели тренировочной нагрузки, характеризующие её с «внешней стороны».
  1. Перечислите разновидности силовых способностей спортсмена.
  1. 23 . Перечислите факторы, обуславливающие воздействие физических упражнений.

Задания, связанные с графическим изображением

24 . Изобразите графически:

А. Стойка, руки на пояс.

Б. Стойка ноги врозь, руки в стороны.

В. Стойка на коленях.

Г. Стойка на лопатках

25. Изобразите графически:

Б. Присед, руки на пояс.

В. Сед углом, ноги врозь.

Г. Упор лежа сзади прогнувшись.

Движители совершенствовались одновременно с появлением новых типов судов и кораблей.

весло

С появлением первых небольших лодок человек понял, что понадобиться средство, которое будет толкать его судно. Первоначально это были весла, которые посредством погружения их в воду и перемещения производили нужный эффект - лодка двигалась. Необходимость в скорости заставила древних кораблестроителей увеличить количество весел и гребцов. Яркий тому пример весельного судна - галера, имеющая длину до 12 метров, на каждом из 96 весел располагалось до шести гребцов из числа рабов или каботажников.

кочет

Весла бывают вальковые, парные и двухлопатковые. Их применяют на лодках, шлюпках и других плавательных средствах, как крайнее средство для движения. Во время гребли средняя часть весла вставляется в отверстие - кочет, где фиксируется и создает упор.

АКТИВНЫЕ ДВИЖИТЕЛИ

парус

Мы знаем, что на протяжении тысячелетий морякам был известен еще один тип движителя - парус. Это также древний и популярный вид движителя, который использует силу ветра. В основном паруса бывают двух типов: прямые - трапециевидной формы, расположенные симметрично относительно мачты, и косые - треугольной или трапециевидной формы, которые крепятся с одной стороны мачты.

Прямым называют вооружение, у которого прямые паруса главные (барк, баркентина).

Суда с косым вооружением называют те, у которых основными являются косые паруса (шхуна, иола, кеч и др.).

Яхты чаще всего оснащаются треугольными парусами, которые получили название «бермудские» паруса.

яхта с «бермудскими» парусами

Также существуют смешанное парусное оснащение, при котором используются паруса всех выше перечисленных типов.

судно со смешанным парусным вооружением

Еще одной разновидностью парусов, которые получили распространение в наше время, можно считать - воздушный змей. По сути это тоже парус, но несколько другой формы. В судоходной компании «Beluga Projects » такой тип движителя уже экономит их расходы на топливо коммерческих судов.

грузовое судно компании «Beluga Projects»

Вынужденные в поисках ветра постоянно посещать участки океана с развитыми штормовыми условиями, часто попадали в жестокие штормы и бури. Со временем техническое несовершенство сыграло свою роль, и дальнейшее увеличение размеров торговых судов уже не могло быть поддержано парусниками - они достигли своего максимума. На смену пришли другие технически более совершенные корабли, отвечающие запросам того времени, а стали кораблями-музеями.

РЕАКТИВНЫЕ ДВИЖИТЕЛИ

гребное колесо

колесный пароход, Ванкувер, Канада

На первых пароходах в качестве основного движителя кораблестроители начали использовать гребное колесо. Но это, пожалуй, самый неудачный из всех движителей. Из-за многочисленных недостатков гребного колеса, которыми были частые поломки, и низкая эффективность по причине «выскакивания» из воды при бортовой качке гребные колеса недобросовестно выполняли свои функции и заняли последнее место среди других типов движителей.

появление гребного винта

Идея создания совершенного и универсального движителя , как всегда была не нова, просто нужно было оказаться в нужном месте и нужное время. Таким человеком оказался Изамбард Брунель, которому, по моему мнению, судостроители обязаны, по сей день. Сквозь многочисленные мнения скептиков он, подробно изучив работу изобретения древнегреческого ученого Архимеда, создал гребной винт, работу которого продемонстрировал на пароходе «SS Great Britain ».

С той поры этот движитель получил самое большое распространение. Изготовленный из различных материалов, меняя количество и угол наклона лопастей, гребной винт совершенствовался и занял лидирующую позицию среди прочих движителей.

Итак, движителем называют устройство, преобразующее мощность от двигателя (источника энергии) в работу поступательного движения корабля или судна.

КЛАССИФИКАЦИЯ ДВИЖИТЕЛЕЙ ДЛЯ КОРАБЛЕЙ И СУДОВ

Различают движители активные : паруса, обеспечивающие движение судна за счет непосредственного воздействия силы, создаваемой источником энергии - ветра, и реактивные , создающие движущее усилие путем отбрасывания масс воды в сторону, противоположную перемещению корабля.

Последние подразделяются на лопастные (колесный, винтовой, плавниковый, крыльчатый ) и водопроточные (водометные и гидрореактивные ).

ЛОПАСТНЫЕ ДВИЖИТЕЛИ

Типичный гребной винт состоит из ступицы с расположенными на ней лопастями. В основе его работы лежит гидродинамическая сила, создаваемая разностью давлений на сторонах лопастей. Любое концентрическое сечение лопастей представляет собой элемент несущего крыла самолета. Поэтому при вращении винта на каждом элементе возникают такие же силы, как и на крыле.

принцип действия гребного винта

Поток, обтекающий выпуклую сторону лопасти (засасывающая сторона), слегка поджимается, и вследствие этого движение его ускоряется. Поток, обтекающий вогнутую сторону лопасти (нагнетающая сторона), встречая на своем пути препятствие, несколько замедляет скорость. В соответствии с законом Бернулли, на засасывающей стороне лопасти давление потока падает и возникает зона разрежения. В то же время на нагнетающей стороне лопасти, напротив, возникает зона увеличенного давления. В результате разности давлений на стороны лопасти образуется гидродинамическая сила. Вследствие длительных исследований было установлено, что основная часть гидродинамической силы около 70 процентов создается за счет разрежения на засасывающей стороне лопастей винта и только 30 процентов за счет давления на нагнетающей стороне лопастей. Проекция гидродинамической силы на ось гребного винта представляет собой упор винта. Эта сила воспринимается лопастями, которые через ступицу и гребной вал передают ее кораблю или судну.

Поскольку лопасти имеют винтообразную поверхность, при вращении винта вода не только отбрасывается назад, но и закручивается в сторону вращения лопастей. Между тем задача движителя - только отбрасывать воду, не вращая ее, создавая реактивный импульс - силу тяги. На закручивание потока и на преодоление сопротивления вращения винта в воде затрачивается значительная доля мощности, подводимой ему от двигателя. Поэтому коэффициент полезного действия гребного винта, равный отношению мощности, затраченной на создание тяги винта (полезная мощность), ко всей мощности, затраченной на вращение винта, всегда будет меньше единицы.

КПД гребных винтов колеблется в диапазоне 0,5 - 0,7. Верхний предел считается очень высоким и достижимым на малооборотных гребных винтах большого диаметра. Для высокооборотистых винтов небольшого диаметра КПД редко превышает 0,5.

Гребной винт всегда согласован с двигателем, в противном случае будет происходить бесцельная потеря мощности. Кроме того, встречаются нереверсивные двигатели, которые не способны изменять сторону вращения вала. В таких случаях существует гребной винт регулируемого шага . В его ступице располагается механизм, поворачивающий лопасти на заданный угол и удерживает их в таком положении. Поворот лопастей позволяет изменять тяговое усилие при постоянной частоте вращения гребного вала и наоборот, сохранять постоянное тяговое усилие при разных частотах вращения вала, а также вообще изменить направление упора (реверс) при неизменном направлении вращения гребного вала.

Для передачи большой мощности часто применяют двух- и трехвальные установки, а на некоторые большие корабли, например авианосцы, оснащены четырьмя симметрично расположенными гребными винтами. Иногда применяются направляющие насадки, что при малой частоте вращения гребного винта обеспечивает прирост упора до шести процентов.

а) - гребной винт с неподвижными лопастями; б) - винт регулируемого шага; в) - гребной винт в насадке; г) - соосные гребные винты противоположного вращения;

азипод

рулевая колонка

Для повышения маневренности некоторых судов получили активное распространение универсальные движители, так называемые активные рули, получившие название «азипод ». Рулевая колонка типа «азипод » включает в себе небольшой гребной винт с собственным электрическим мотором. Вращаясь вокруг своей оси, винт создает упор и увеличивает тем самым вращающий момент, действующий на руль.

движитель типа «Азипод»

К сожалению, дороговизна конструкции ограничивает область применения движителей типа «азипод », но они оправдывают затраченные средства. Используются на ледоколах, современных круизных лайнерах, нефтедобывающих буровых платформах и других типах судов.

плавниковый движитель

плавниковый движитель

Для сохранения устойчивости корабля или судна судостроители оснащают свои «творения» небольшими килевидными стабилизаторами, выступающими с обеих сторон корпуса судна. По образу и подобию они похожи на плавники огромных китов, за что и получили соответствующую классификацию. Каждый из них имеет обтекаемую форму, благодаря которой рассекает волны, не замедляя ход корабля.Принцип действия очень прост - установленные под углом плавниковые движители производят тот же эффект, что и крылья самолета - либо погружают корпус судна глубже, либо поднимают его выше. Когда волны пытаются накренить корабль то в одну, то в другую сторону, килевидные стабилизаторы наклоняют корпус в противоположное направление крену. Это придает судну устойчивость даже при больших волнах.

крыльчатые движители

принцип действия крыльчатого движителя

Крыльчатые движители нашли применение, прежде всего в подруливающих устройствах. Они объединяют в себе функции движителя и руля и представляют собой ротор, установленный на одном уровне с днищем судна, и вращающийся вокруг вертикальной оси, по окружности которого на равных угловых расстояниях располагаются от 3 до 8 перпендикулярных к его поверхности лопастей, выполненных в виде крыльев. Вращаясь вместе с ротором, лопасти периодически поворачиваются вокруг своей собственной оси. Поворот лопастей производится так, что при каждом положении на ней создается сила, имеющая наибольшую проекцию в направлении движения судна. Это, достигается, когда условные перпендикулярные к хордам лопастей пересекаются в одной точке, являющейся центром управления. Перемещение центра управления вдоль оси, перпендикулярной к направлению движения корабля, изменяет величину и знак упора. Таким образом, крыльчатые движители обладают теми же свойствами, что и винт регулируемого шага. При произвольном перемещении центра управления в плоскости, параллельной плоскости ватерлинии, можно изменять направление вектора упора в пределах от 0 до 360 градусов. Для поворота лопастей и перемещения центра управления служит механический привод, расположенный в корпусе движителей и управляемый гидравлической системой.

крыльчатый движитель

По эффективности, а также по сложности и массогабаритным характеристикам крыльчатый движитель уступает гребным винтам, а потому используется в качестве эффективного подруливающего устройства.

Применяются на судах, к маневренности которых предъявляются повышенные требования (буксиры, рыболовные суда, тральщики и др.).

ВОДОПРОТОЧНЫЕ ДВИЖИТЕЛИ

водометный движитель

водометный движитель

Водометный движитель (водомёт) представляет собой рабочее колесо водяного насоса, помещенное в водопроточном канале, через который выбрасывается вода с увеличенной скоростью по оси движителя. К основным преимуществам подобных движителей относятся: хорошая защищённость от механических повреждений и возможность избежать кавитации, защищенность от плавающих на поверхности акватории предметов,меньший гидродинамический шум по сравнению с винтовыми движителями, что очень важно для подводных лодок. располагаются внутри или снаружи корпуса судна. Эффективность водомётного движителя зависит от формы водоводов, места расположения и конструкции водозаборников.

Применяются, как правило, на , работающих на мелководье, или служат в качестве подруливающего устройства для улучшения поворотливости судов.

движители насосного типа

движитель типа «pump-jet»

На субмаринах вообще стали применять новый тип движителя - pump-jet, что значит-движители насосного типа. Существуют две их разновидности:

-движитель насосного типа с предварительной закруткой - статор (основание насадки) расположен перед ротором;

-движитель насосного типа с последующей раскруткой, когда ротор расположен перед статором.

разновидности движителя насосного типа «pump jet»

1) - ротор; 2) - насадка; 3 - статор; 4) - основание насадки; 5) - статор-основание насадки;

Качества обоих типов движителей одинаковы, но движитель насосного типа с предварительной закруткой имеет лучшие кавитационные характеристики, хотя конструктивно более сложен.

гидрореактивный движитель

В гидрореактивном движителе для ускорения потока воды используется энергия сжатого воздуха или продуктов сгорания, подаваемых в водовод через сопло. Характерная особенность таких устройств - отсутствие валопровода и механического рабочего органа. Различают:

тепловые - прямоточные (пароводяная смесь образуется в камере, куда подается пар или горячий газ, создающий движущую силу);

пульсирующие (поршневого типа с пульсирующей газоводяной камерой сгорания, с реактивной газоводяной трубой взрывного типа и др.);

эжекционные и другие, использующие энергию холодного сжатого газа, ускоряющего поток водовоздушной смеси. Применяются в гражданском судостроении.

КАК ИЗГОТАВЛИВАЮТ ГРЕБНЫЕ ВИНТЫ

Самые большие гребные винты достигают высоты трехэтажного здания, а их изготовление требует уникальных навыков. Во времена, когда был создан винтовой пароход «SS Great Britain » на изготовление форм гребного винта уходило до 10 дней. Сегодня благодаря наличию компьютерных технологий автоматизированный манипулятор делает это за пару часов. Форма винта вводится в компьютер, и алмазное сверло на конце манипулятора вырезает из огромных пенопластовых блоков идеальную копию лопасти с точностью до 1 мм. Затем в готовую модель помещают смесь песка и цемента, чтобы получить точный оттиск. После того как бетон остынет, в форму, состоящую из двух половинок, соединяют вместе и заливают расплавленный до 3000 градусов металл.Гребной винт нельзя делать из чего-либо. Винт должен быть достаточно прочен, чтобы выдержать тысячи тонн давления и не подвергаться коррозии в соленой морской воде. Наиболее распространенными материалами для изготовления гребных винтов являются сталь, латунь и бронза. В последние годы для этой же цели стали применять пластмассы.

Сплав из цветных металлов для гребных винтов, получил название «куниал ». Он имеет прочность стали, но гораздо лучше противостоит коррозии. Куниал может находиться в воде десятилетиями, не ржавея при этом. Для придания сплаву предельной точности к 80 % меди необходимо добавить 5 % никеля и 5 % алюминия, а также 10 % других металлов. Переплавка осуществляется при температуре 3200 градусов.

Пройдя контроль качества, «коктейль» из расплавленных металлов заливается в форму. Чтобы избежать попаданий воздуха в структуру металл заливается ровной струей. Спустя два дня форма остывает. Затем лопасти высвобождают из формы.

Эффективность гребного винта зависит от гладкой и обтекаемой формы лопастей. Поверхность отлитой из формы детали неидеальна, и покрыта литейной коркой. Для определения толщины слоя применяется лазерный измеритель. После чего лишний слой удаляется с помощью резака из карбид-вольфрама. Затем гребной винт полируется до идеально гладкой поверхности, пока не будет составлять 1,6 микромиллиметра. В итоге поверхность приобретает гладкость стекла.

Гребной винт - изделие сугубо индивидуальное и для каждого современного судна или корабля должно иметь оптимальную форму, чтобы скользить и захватывать необходимое количество энергии, учитывая условия эксплуатации. Главная проблема всех гребных винтов - кавитация . Все дело в том, что под водой при их вращении на лопастях возникает область пониженного давления, в которой вода в буквальном смысле начинает закипать, даже при низких температурах. Поэтому движители испытывают на специальных стендах, где подбирают оптимальные параметры работы гребного винта, и проверяют правильный угол лопастей.

Как не печально, но невероятной красоты гребные винты обречены на тяжелый труд, скрытый от человеческих глаз под морскими волнами.Таким образом, из всех типов существующих движителей главенствующую роль занимает гребной винт , и пока нет оснований полагать, что в ближайшие годы для него найдется более эффективная замена.

Afrikaans Albanian Arabic Armenian Azerbaijani Basque Belarusian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Detect language Dutch English Estonian Filipino Finnish French Galician Georgian German Greek Haitian Creole Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Japanese Korean Latin Latvian Lithuanian Macedonian Malay Maltese Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swahili Swedish Thai Turkish Ukrainian Urdu Vietnamese Welsh Yiddish ⇄ Afrikaans Albanian Arabic Armenian Azerbaijani Basque Belarusian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Filipino Finnish French Galician Georgian German Greek Haitian Creole Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Japanese Korean Latin Latvian Lithuanian Macedonian Malay Maltese Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swahili Swedish Thai Turkish Ukrainian Urdu Vietnamese Welsh Yiddish

English (auto-detected) » Russian

Изобретение относится к судостроению, в частности к приводной системе гребного винта, а также к способу обеспечения движения судна и управления им по курсу. Система содержит азимутальную силовую установку (6) и приводные средства для разворота азимутальной силовой установки (6) с целью управления судном по курсу. Приводные средства содержат электродвигатель (20) для разворота указанной азимутальной силовой установки (6) через механическую силовую передачу (40), связанную с указанным электродвигателем. Источник питания (30) обеспечивает подачу на указанный электродвигатель (20) электрической энергии. Модуль (34) управления осуществляет управление работой электродвигателя (20) посредством управления указанным источником питания (30). Система включает в себя также датчик (16) для определения углового положения указанной азимутальной силовой установки (6). Модуль (34) управления выполнен с возможностью совместной обработки команды рулевого управления, поступающей от устройства (38) рулевого управления, и позиционной информации об угловом положении, поступающей от указанного датчика (16), и с возможностью управления работой указанного электродвигателя (20) на основе результатов указанной обработки. Изобретение направлено на упрощение конструкции приводной системы, повышение ее экономичности и безопасности. 2 н. и 10 з.п.ф-лы, 5 ил.

Область техники, к которой относится изобретениеНастоящее изобретение относится к приводной системе гребного винта надводного судна и в особенности к системе, которая включает в себя силовую установку, выполненную с возможностью разворота относительно корпуса судна. Изобретение относится также к способу обеспечения движения судна и управления им по курсу.Уровень техникиВ большинстве случаев корабли, или суда (включая пассажирские суда и паромы, грузовые суда, лихтеры, нефтеналивные танкеры, ледоколы, суда прибрежного плавания, военные корабли и т.д.), приводятся в движение посредством полезной тяги, создаваемой вращающимся гребным винтом или несколькими винтами. Управление судами по курсу обычно осуществляется посредством отдельного рулевого устройства.Традиционно приводы гребного винта, т.е. установки для обеспечения его вращения, включали размещенный внутри судового корпуса судовой двигатель (дизельную, газовую или электрическую силовую энергетическую установку). С двигателем связан гребной вал, проходящий через дейдвудное устройство, обеспечивающее уплотнение гребного винта в месте выхода из корпуса. Сам гребной винт находится на противоположном конце гребного вала, т.е. на конце, удаленном от корпуса. Гребной вал может быть связан с судовым двигателем либо непосредственно, либо через зубчатую передачу (редуктор). Подобная схема используется на большинстве надводных судов для того, чтобы развить тягу, необходимую для движения судна.Недавно начали появляться суда с гребными валами, в которых двигатель (обычно электрический), обеспечивающий выработку необходимой мощности для гребного винта, вместе с необходимыми передачами находится вне корпуса судна внутри специальной камеры или силовой гондолы, выполненной с возможностью вращения относительно корпуса. Подобный узел может быть развернут относительно корпуса, и это означает, что он может быть использован вместо отдельного рулевого устройства также для руления судном (управления по курсу). Более конкретно, силовая гондола, содержащая двигатель, устанавливается на специальном трубчатом или каком-либо ином валу с возможностью разворота относительно корпуса судна; при этом данный вал проходит сквозь днище корпуса. Более подробно подобная судовая установка описана в патенте Финляндии №76977, принадлежащем заявителю данной заявки. Подобные установки получили название азимутальных силовых установок, причем заявитель данной заявки выпускает азимутальные установки этого типа под торговым наименованием AZIPOD.Было обнаружено, что, помимо выгод, обусловленных отказом от длинного гребного вала и отдельного рулевого устройства, оборудование описанного типа дает также фундаментальное преимущество в отношении управляемости судном по курсу. Оказалось также, что достигается и экономия энергии. Применение азимутальных судовых установок на различных надводных судах в последние годы стало обычным и предполагается, что рост их популярности продолжится.В соответствии с известными решениями устройства разворота азимутальных судовых установок обычно выполнялись таким образом, что зубчатое кольцо баллера руля или какая-либо другая кромка баллера прикреплялась к трубчатому валу, который образует ось разворота установки. Баллер разворачивается с помощью гидродвигателей, специально приспособленных для взаимодействия с баллером. Движение разворота баллера может быть остановлено в заданном положении, когда с помощью упомянутых гидродвигателей не производится выполнение никаких команд рулевого управления. По этой причине в гидравлической системе всегда поддерживается рабочее давление, даже когда судно движется по прямой.В соответствии с одним известным решением используются четыре гидродвигателя, которые установлены с возможностью взаимодействия с поворотным ободом. Приводная система, которая обеспечивает гидравлическое давление, необходимое для работы гидродвигателей, содержит также гидравлический насос и электродвигатель, приводящий его во вращение. Чтобы повысить эксплуатационную надежность вращающихся зубчатых колес, гидродвигатели могут быть сгруппированы в двух отдельных гидравлических контурах, в каждом из которых используются собственные компоненты, обеспечивающие создание гидравлического давления.Применение гидравлической системы было обусловлено, в частности, тем, что гидравлика позволяет получить довольно высокий вращательный момент при относительно низкой скорости вращения, необходимый для разворота азимутальной силовой установки. Кроме того, при использовании гидравлики управление судном по курсу путем разворота силовой установки может быть осуществлено довольно просто и достаточно точно с помощью традиционных клапанных распределителей и других соответствующих компонентов гидравлики. Как уже было упомянуто, одно из преимуществ, достигаемых в случае применения гидравлики, заключается в возможности быстро и точно остановить движение разворота силовой установки в заданном положении. При этом установка может удерживаться в таком положении, что рассматривается в качестве важного условия управления судном по курсу.Однако было обнаружено, что с известной гидравлической системой, которая сама по себе может считаться эффективной и надежной, связан целый ряд проблем и недостатков. Для того чтобы реализовать известную систему разворота, суда должны оснащаться специальной, дорогой и сложной системой гидравлики, включающей в себя большое количество различных компонентов, хотя вращение самого гребного винта обеспечивается с помощью электродвигателя. Это, помимо прочего, означает потерю части выигрыша, обусловленного более эффективным использованием внутреннего объема судна, достигаемого в случае внешней азимутальной силовой установки. Кроме того, гидравлические системы требуют регулярного и довольно частого обслуживания и проверки, что ведет к повышению эксплуатационных затрат и может даже привести к снятию судна с эксплуатации на срок проведения мероприятий по его обслуживанию. Еще один недостаток гидравлических систем состоит в том, что для них характерна тенденция к утечкам масла или другой гидравлической жидкости, особенно из различных шлангов, стыков и зон уплотнений. Помимо дополнительных издержек, обусловленных утечками и, следовательно, дополнительным расходом гидравлической жидкости, это создает также проблемы охраны и очистки окружающей среды. Кроме того, утечки могут приводить к серьезным проблемам безопасности, поскольку поверхности, смоченные гидравлической жидкостью, становятся скользкими и вследствие этого опасными, кроме того, утечки гидравлической жидкости могут повышать пожароопасность. Внутреннее давление в гидравлической системе является довольно высоким, так что утечка в шланге может привести к возникновению тонкой струи масла под высоким давлением, которая может нанести серьезные повреждения обслуживающему персоналу. В процессе своего функционирования гидравлическая система может создавать значительные шумы, что, помимо прочего, ухудшает условия работы обслуживающего персонала. Этот шум является непрерывным, поскольку система должна быть в рабочем состоянии все то время, пока судно находится в движении. Далее, при использовании гидравлической системы движение разворота силовой установки происходит только с постоянной (т.е. единственной) скоростью. Однако существуют ситуации, в которых желательно обеспечить, по меньшей мере, еще одну скорость разворота.Сущность изобретенияТаким образом, основная задача, решаемая настоящим изобретением, заключается в устранении недостатков известной технологии и в разработке нового варианта обеспечения разворота азимутальной силовой установки относительно корпуса судна.Одна из задач, решаемых настоящим изобретением, состоит в том, чтобы устранить необходимость использования отдельной гидравлической системы и избежать при осуществлении разворота азимутальной силовой установки всех проблем, связанных с применением такой системы.Еще одной задачей является решение проблемы повышения надежности и экономичности оборудования, применяемого для осуществления разворота азимутальной силовой установки, по сравнению с известными решениями.Следующей задачей является решение проблемы снижения уровня шума, создаваемого оборудованием при развороте азимутальной силовой установки, по сравнению с известными решениями.Еще одна задача состоит в разработке решения, позволяющего изменять и/или регулировать скорость разворота азимутальной силовой установки.Дальнейшей задачей является решение проблемы снижения экологического риска, связанного с эксплуатацией оборудования для разворота азимутальной силовой установки, и повышения общего уровня чистоты и безопасности по сравнению с известными решениями.Изобретение основано на новом принципе, заключающемся в том, что разворот азимутальной силовой установки обеспечивается связанным с ней напрямую электроприводом, который управляется от модуля управления, выполненного с возможностью обрабатывать как команды рулевого управления судном, так и информацию, поступающую от датчика, который определяет угловое положение азимутальной силовой установки.Более конкретно, в соответствии с настоящим изобретением приводная система гребного винта для обеспечения движения надводного судна и управления им по курсу содержит азимутальную силовую установку, в состав которой входят силовая гондола, расположенная вне корпуса судна ниже ватерлинии, первый электродвигатель или аналогичный приводной агрегат, установленный внутри указанной гондолы для обеспечения вращения гребного винта, связанного с указанной гондолой, и узел вала, связанный с указанной гондолой и несущий ее с возможностью разворота гондолы относительно корпуса судна, а также приводные средства для обеспечения разворота указанной азимутальной силовой установки относительно корпуса указанного судна для управления судном по курсу в соответствии с командой рулевого управления, поступающей от устройства рулевого управления судном.Одна из главных отличительных особенностей приводной системы по изобретению состоит в том, что приводные средства содержат второй электродвигатель для разворота указанной азимутальной силовой установки через механическую силовую передачу, связанную со вторым электродвигателем. При этом система дополнительно содержит источник питания для подачи электрической энергии на указанный второй электродвигатель и модуль управления для управления работой указанного второго электродвигателя посредством управления указанным источником питания.Как уже упоминалось, модуль управления выполнен с возможностью совместной обработки команды рулевого управления, поступающей от указанного устройства рулевого управления судном, и позиционной информации об угловом положении, поступающей от указанного датчика, и с возможностью управления работой указанного второго электродвигателя на основе результатов указанной обработки.В соответствии с одним из предпочтительных вариантов реализации изобретения в состав приводных средств, или силовой передачи, с помощью которой обеспечивается разворот азимутальной силовой установки, входят круговой зубчатый обод, закрепленный на узле вала, а также шестерня, червяк или аналогичный зубчатый компонент, выполненные с возможностью взаимодействия с указанным зубчатым ободом. В этом случае поворот зубчатого компонента производится посредством редуктора, установленного между зубчатым ободом и вторым электродвигателем.Желательно также снабдить систему по изобретению соответствующим средством торможения для обеспечения остановки разворота азимутальной силовой установки и удержания ее в заданном положении, а также обеспечить функциональную связь между этим средством торможения и модулем управления с целью передачи на это средство команд управления. В соответствии с одним из предпочтительных вариантов средство торможения, с помощью которого регулируется скорость разворота, функционально связано с инвертором переменного тока (ПТ-инвертором), который входит в состав источника питания. Указанное средство торможения может представлять собой тормоз, например фрикционный или магнитный, выполненный отдельно от второго электродвигателя.Решение задач, поставленных перед изобретением, предусматривает также создание нового способа обеспечения движения и управления по курсу надводным судном. Согласно данному способу судно приводят в движение посредством азимутальной силовой установки, содержащей силовую гондолу, расположенную вне корпуса судна ниже ватерлинии, первый электродвигатель или аналогичный приводной агрегат, установленный внутри гондолы для обеспечения вращения гребного винта, связанного с указанной гондолой, и узел вала, связанный с гондолой и несущий ее с возможностью разворота гондолы относительно корпуса судна. При этом азимутальную силовую установку разворачивают относительно корпуса указанного судна в соответствии с командой рулевого управления, поступающей от устройства рулевого управления судном.Основной отличительной особенностью способа по изобретению является наличие в нем следующих операций:посредством датчика, функционально связанного с модулем управления, определяют угловое положение азимутальной силовой установки по курсу,в модуле управления производят обработку информации, содержащейся в команде рулевого управления, поступившей от указанного устройства управления, и информации об угловом положении, поступающей от указанного датчика,основываясь на результатах указанной обработки, разворачивают азимутальную силовую установку через механическую силовую передачу, связанную с вторым электродвигателем, иподают электрическую мощность на второй электродвигатель также на основе результатов указанной обработки.Разворот азимутальной силовой установки предпочтительно осуществляют посредством кругового зубчатого обода, шестерни или червяка, выполненных с возможностью взаимодействия с указанным зубчатым ободом, и редуктора, установленного между указанным зубчатым ободом и указанным вторым электродвигателем.Питание указанного второго электродвигателя целесообразно осуществлять через ПТ-инвертор, а требуемую регулировку скорости разворота указанной азимутальной силовой установки производить посредством соответствующей регулировки электрической мощности, поступающей от указанного ПТ-инвертора. В этом случае остановку разворота указанной азимутальной силовой установки и/или ее удержание в развернутом положении осуществляют с помощью средства торможения, управляемого от ПТ-инвертора. В одном из вариантов предлагаемого способа торможение разворота указанной азимутальной силовой установки осуществляют посредством электрического генератора, связанного с азимутальной силовой установкой через механическую силовую передачу, с подачей генерируемой при этом электрической энергии в электрическую сеть. При этом в качестве электрического генератора используют указанный второй электродвигатель, работающий в режиме генератора.Кроме того, согласно предпочтительному варианту реализации способа по изобретению обработку указанной команды рулевого управления и указанной позиционной информации в модуле управления производят посредством устройства обработки данных, такого как микропроцессор или модуль управления мощностью.Настоящее изобретение обеспечивает получение нескольких существенных преимуществ. Благодаря ему становится возможным отказаться от известной системы, основанной на использовании гидравлики, и тем самым устранить названные выше проблемы, связанные с таким использованием. Суммарная экономия, достигаемая применением электродвигателя, значительна, а требования по обслуживанию практически отсутствуют. Система разворота на основе электропривода является, кроме того, высоконадежной. На современных судах обеспечение электроэнергией не является проблемой, причем она используется во многих частях судна (в частности, азимутальная силовая установка также содержит электродвигатель). Следовательно, устраняется необходимость применения отдельной (дорогостоящей) гидравлической системы. Появляется также возможность использования электропривода, обеспечивающего разворот азимутальной силовой установки с регулируемой скоростью.Перечень фигур чертежейДалее настоящее изобретение, а также его различные аспекты и преимущества будут подробно описаны на примере предпочтительных вариантов его выполнения и со ссылками на прилагаемые чертежи, где сходные компоненты обозначены на разных фигурах теми же числовыми обозначениями.На фиг.1 дана упрощенная принципиальная схема одного из вариантов выполнения системы по настоящему изобретению.На фиг.2 приведена блок-схема системы по фиг.1.На фиг.3 изображена силовая установка, смонтированная на судне.На фиг.4 в форме диаграммы представлено оборудование, входящее в состав системы углового перемещения в соответствии с другим вариантом выполнения изобретения.На фиг.5 дан график последовательности операций, выполняемых системой углового перемещения по настоящему изобретению.Сведения, подтверждающие возможность осуществления изобретенияНа фиг.1 в виде упрощенной принципиальной схемы, а на фиг.2 в виде блок-схемы представлен один из вариантов системы углового перемещения по настоящему изобретению. На фиг.3 изображена азимутальная силовая установка 6, размещенная на судне 9. Более конкретно, на фиг.1 представлена азимутальная силовая установка 6, в состав которой входит герметичная силовая гондола 1. Внутрь гондолы 1 помещен первый электродвигатель 2 (электродвигатель гребного вала), в качестве которого может быть применен любой подходящий двигатель известного типа. Электродвигатель 2 связан известным способом посредством гребного вала 3 с гребным винтом 4.Согласно одному из альтернативных вариантов внутри указанной гондолы 1 может быть предусмотрена зубчатая передача, входящая в состав установки и расположенная между указанным электродвигателем 2 и гребным валом 4. В одном из вариантов с каждой гондолой связан более чем один гребной винт. В таком случае может иметься, например, два гребных винта, один из которых расположен впереди, а другой позади гондолы.Указанная гондола 1 установлена с возможностью поворота вокруг вертикальной оси и связана с не изображенным на фиг.1 корпусом судна (см. также фиг.3) посредством, по существу, вертикального узла 8 вала (подшипники этого узла на фиг.1 не изображены; один из альтернативных вариантов его выполнения приведен в указанном патенте Финляндии №76977, который включен в данную заявку посредством ссылки на него). Указанный узел 8 (представляющий собой, по сути, полый вал трубчатой конструкции) может иметь достаточно большой диаметр, чтобы обеспечить обслуживание двигателя, расположенного под этим узлом, в гондоле, а также зубчатой передачи, которая может входить в состав установки, и гребного вала.Зубчатый обод 10 или функционально аналогичный зубчатый обод баллера является круговым, т.е. расположенным по всей окружности указанного узла 8 вала; он соединен с указанным узлом 8 для передачи на него мощности, необходимой для осуществления поворота этого узла относительно корпуса судна. Когда узел 8 вала поворачивается, вместе с ним разворачивается и силовая установка 6. В варианте, показанном на фиг.1, комплект оборудования, входящего в силовую передачу 40 для осуществления поворота указанного зубчатого обода 10, включает в себя шестерню 12, коническую зубчатую передачу 14, муфту 24, зубчатый редуктор 22 и второй электродвигатель 20, а также валы 21, 23 между названными элементами. Показано также средство 26 торможения, установленное на валу 21, и вентилятор для охлаждения двигателя 20. В изображенном варианте средство 26 торможения представляет собой дисковый тормоз с соответствующим приводом. Следует отметить, что в рамках настоящего изобретения не все из перечисленных компонентов являются обязательной частью указанной передачи 40; соответственно, некоторые из них могут быть опущены или заменены другими компонентами.Электрическая энергия поступает на электродвигатель 20 по кабелю 28 от ПТ-инвертора 30 (инвертора переменного тока), который работает как источник питания (мощности). Принципы работы инвертора должны быть известны специалисту в данной области техники, поэтому в их изложении нет необходимости. Достаточно отметить, что основными силовыми компонентами инвертора являются выпрямитель, промежуточный контур постоянного тока и инвертирующая схема. В настоящее время инверторы переменного тока находят широкое применение, в том числе и в качестве входных устройств для двигателей переменного тока. Особенно эффективны они для применения в различных управляемых электроприводах. Наиболее распространенными среди ПТ-инверторов являются ШИМ-инверторы, в которых используется широтно-импульсная модуляция и в которых имеется промежуточный контур регулировки напряжения.Использование ПТ-инвертора эффективно, в том числе и потому, что он позволяет регулировать угловую скорость поворотного оборудования, входящего в комплект 40, и следовательно, скорость вращения указанного узла 8. В соответствии с одним из вариантов используется, по меньшей мере, две различные скорости. Согласно другому варианту скорость вращения может регулироваться в пределах некоторого интервала скоростей, например от 0 до номинальной скорости вращения.Управление работой ПТ-инвертора 30 обеспечивается модулем 34 управления (таким, как сервопривод рулевого управления) по линии 32. Указанный модуль 34 управления, в свою очередь, функционально связан с устройством рулевого управления, например со штурвалом 38, установленным на капитанском мостике или в другой соответствующей части судна. Команды управления по курсу, выдаваемые вручную, т.е. поворотом штурвала, преобразуются, например, посредством отдельных аналоговых сервомеханизмов в команды рулевого управления. В соответствии с другим вариантом команды управления с помощью соответствующего преобразователя, связанного со штурвалом, преобразуются в цифровые курсовые сигналы, которые по линии 36 посылаются на модуль 34 управления.Указанный модуль 34 управления использует информацию, содержащуюся в командах управления по курсу, формируемых штурвалом 36, для управления ПТ-инвертором. Инвертор, в свою очередь, обеспечивает питание двигателя 20 током. Результирующее вращение двигателя (с заданной скоростью) в направлении по или против часовой стрелки приводит к желаемому изменению углового положения указанного узла 8 вала и, следовательно, силовой установки 6.Модуль 34 управления может представлять собой любое подходящее устройство обработки данных и/или управляющее устройство, сервопривод рулевого управления (например, так называемый аналоговый сервомеханизм) или другое соответствующее устройство, способное осуществлять обработку команд рулевого управления и другой информации, связанной с рулением (которая будет рассмотрена далее), а также управлять ПТ-инвертором или аналогичным силовым модулем на основе результатов указанной обработки.На фиг.1 и 2 показан также датчик 16 углового положения, механически связанный с азимутальной силовой установкой 6 (в частном случае он установлен на зубчатом ободе 10) и предназначенный для определения угла поворота указанного узла 8. Для этой цели могут быть использованы различные датчики, которые сами по себе известны. Так, датчик 16 может быть построен на основе фотооптического датчика, так называемого сельсина, или датчика, основанного на системах машинного или компьютерного зрения, способных измерять угол поворота. Следует заметить, что конкретный тип датчика 16 не оказывает существенного влияния на воплощение настоящего изобретения; важно лишь, чтобы с помощью применяемого датчика надежно определялось направление, по которому ориентирована азимутальная силовая установка.Датчик 16 углового положения имеет функциональную связь 18 с модулем 34 управления для того, чтобы передавать на этот модуль позиционные сигналы. Указанная связь 18 может представлять собой, например, кабель или радиоканал. Система по изобретению может также содержать аналого-цифровой преобразователь 35 (АЦП) для преобразования аналогового позиционного сигнала, поступающего от датчика 16, в цифровой формат, в котором возможна его обработка в модуле 34 управления (если данный модуль требует выполнения подобного преобразования).Модуль 34 управления выполнен с возможностью совместной обработки в процессоре 33 или в аналогичном ему устройстве обработки данных информации, которую он получил от указанного датчика 16 положения, с командами рулевого управления, полученными от указанного устройства 38 рулевого управления, и с возможностью управления на основе полученных результатов работой ПТ-инвертора 30 или аналогичного силового модуля, как это показано на фиг.2.На фиг.1 и 2 представлено уже упоминавшееся средство 26 торможения. Оно предназначено для того, чтобы останавливать движение поворота силовой установки 6 в заданном положении и удерживать установку в зафиксированном положении все то время, пока не выдается никаких команд рулевого управления. Управление функционированием указанного средства 26 торможения (в частности, временными характеристиками и усилием при торможении и удержании) может осуществляться благодаря наличию функциональной связи между этим средством и модулем управления, осуществляющим управление системой. Согласно предпочтительному варианту, изображенному на фиг.2, управление работой указанного средства 26 торможения обеспечивается с помощью указанного ПТ-инвертора 30, который, в свою очередь, получает команды рулевого управления от модуля 34 управления. Описанный вариант обеспечения торможения позволяет использовать для управления торможением также информацию, исходящую от датчика 16. В результате ориентация гребного винта, т.е. направление тягового усилия, которое обеспечивает движение судна, может быть отрегулирована с высокой точностью.Средство торможения может представлять собой механический фрикционный тормоз (в частности, дисковый или барабанный тормоз, тормозные башмаки) или же магнитный тормоз, который может быть размещен в соответствующей части комплекта оборудования силовой передачи 40 или даже обеспечивать торможение/удержание непосредственно узла 8 вала силовой установки 6. В соответствии с одной из возможных альтернатив указанный редуктор 22 или шестерня, непосредственно взаимодействующая с зубчатым ободом 10, выполняются таким образом, чтобы обеспечить торможение любого углового перемещения, исходящего от силовой установки 6, но способствовать движению поворота, исходящего от указанного двигателя 20. Другими словами, эти компоненты выполнены таким образом, что допускают передачу вращательного движения только в одном направлении.Еще один возможный вариант состоит в том, чтобы использовать для торможения/удержания сам электродвигатель 20. В этом случае с помощью указанного ПТ-инвертора 30 и указанного модуля 34 управления обеспечивается управление усилием, формируемым двигателем 20, таким образом, чтобы достичь получения желательного контролируемого эффекта торможения/удержания. Торможение/удержание может полностью обеспечиваться с помощью электродвигателя 20. Альтернативно, двигатель может генерировать только какую-то долю от требуемого усилия торможения/удержания. В этом случае торможение завершается с помощью отдельных средств торможения. В последнем случае достигается уменьшение усилия торможения, которое должен развивать механический тормоз. В соответствии с еще одним вариантом указанный электродвигатель 20 во время торможения работает как генератор, причем электрическая энергия, генерируемая при торможении, подается в электрическую сеть. Желательно, чтобы электрическая сеть была той же самой сетью, которая обеспечивает питание электрической машины, входящей в состав комплекта оборудования, когда она функционирует как электродвигатель.На фиг.4 представлен вариант системы по изобретению, ориентированный на получение наиболее компактной и простой структуры. Как показано на фиг.4, указанный зубчатый обод 10 приводится во вращение посредством червяка 12, непосредственно связанного с указанным зубчатым редуктором 22. Однако при этом следует отметить, что хотя в вариантах, представленных на фиг.1 и 4, имеется зубчатый обод 10 и средства 12 для обеспечения его поворота, применение зубчатого обода не является обязательным. Возможны и другие решения, обеспечивающие передачу мощности от указанного двигателя к указанному узлу 8. К таким решениям, например, относится использование электродвигателя, статорная обмотка которого охватывает по периметру узел 8 вала. В этом случае под силовой передачей подразумеваются любые средства, обеспечивающие передачу мощности от указанного двигателя на указанный узел 8.Фиг.4 иллюстрирует также другой вариант выполнения датчика. В этом варианте использован бесконтактный датчик 16, установленный вблизи, но тем не менее отдельно от узла вала силовой установки. Указанный датчик воспринимает метки, распределенные по периферии узла вала, и на основе этой информации вырабатывает позиционный сигнал.На фиг.5 приведен график последовательности операций, выполняемых системой согласно настоящему изобретению. В соответствии с принципами изобретения движение судна обеспечивается посредством азимутальной силовой установки. Ориентация (направление по курсу) силовой установки отслеживается посредством датчика. Информация, поступающая от датчика, может использоваться в аналоговом формате или, если это необходимо, преобразовываться в цифровую форму. До поступления новой команды на изменение курса положение азимутальной силовой установки удерживается соответствующим последней команде, полученной с капитанского мостика. Если анализ позиционной информации указывает на необходимость коррекции положения (вследствие отклонения от заданного курса, проскальзывания в тормозе или каких-либо иных причин), она может быть проведена автоматически.Когда необходимо произвести поворот судна, в модуль управления поступает соответствующая команда. Эта команда обрабатывается в модуле управления согласно установленному порядку. При этом используется новейшая позиционная информация, полученная от датчика. По завершении указанной обработки модуль управления выдает команду на разворот азимутальной силовой установки на соответствующие компоненты системы по изобретению, в состав которой входит электродвигатель. Управление электродвигателем осуществляется посредством управления источником мощности, таким как инвертор. Обеспеченное таким образом вращение электродвигателя через механическую передачу преобразуется в заданный разворот азимутальной силовой установки; в результате судно соответственно изменяет свой курс.Таким образом, настоящее изобретение обеспечивает создание системы и способа, которые представляют собой новое решение проблемы управления по курсу для судна, оборудованного азимутальной силовой установкой. Данное решение позволяет устранить ряд недостатков, присущих уровню техники, и обладает преимуществами упрощения конструкции, повышенной экономичности, удобством управления и безопасностью. Следует отметить, что описанные варианты осуществления настоящего изобретения не ограничивают объема его правовой охраны, который определяется формулой изобретения. Напротив, формула изобретения охватывает все модификации, эквивалентные и альтернативные варианты, которые соответствуют принципам и объему изобретения, определяемому формулой.

Формула изобретения

1. Приводная система гребного винта для обеспечения движения надводного судна и управления им по курсу, содержащая азимутальную силовую установку (6), в состав которой входят силовая гондола (1), расположенная вне корпуса судна ниже ватерлинии, первый электродвигатель (2) или аналогичный приводной агрегат, установленный внутри указанной гондолы для обеспечения вращения гребного винта (4), связанного с указанной гондолой, и узел (8) вала, связанный с указанной гондолой и несущий ее с возможностью разворота гондолы относительно корпуса судна (9), приводные средства для обеспечения разворота указанной азимутальной силовой установки (6) относительно корпуса указанного судна (9) для управления судном по курсу в соответствии с командой рулевого управления, поступающей от устройства (38) рулевого управления судном, отличающаяся тем, что указанные приводные средства содержат второй электродвигатель (20) для разворота указанной азимутальной силовой установки (6) через механическую силовую передачу (40), связанную с указанным вторым электродвигателем, при этом система дополнительно содержит источник питания (30) для подачи электрической энергии на указанный второй электродвигатель (20), модуль (34) управления для управления работой указанного второго электродвигателя (20) посредством управления указанным источником питания (30), датчик (16), функционально связанный с указанным модулем (34) управления для определения углового положения указанной азимутальной силовой установки (6), причем указанный модуль (34) управления выполнен с возможностью совместной обработки команды рулевого управления, поступающей от указанного устройства (38) рулевого управления судном, и позиционной информации об угловом положении, поступающей от указанного датчика (16), и с возможностью управления работой указанного второго электродвигателя (20) на основе результатов указанной обработки.2. Приводная система гребного винта по п.1, отличающаяся тем, что механическая силовая передача включает в себя круговой зубчатый обод (10), соединенный с узлом (8) вала, шестерню или червяк (12), выполненные с возможностью взаимодействия с указанным зубчатым ободом, и редуктор (22), установленный между указанным зубчатым ободом и указанным вторым электродвигателем (20).3. Приводная система гребного винта по п.1 или 2, отличающаяся тем, что указанный источник питания (30) содержит инвертор переменного тока (ПТ-инвертор).4. Приводная система гребного винта по п.3, отличающаяся тем, что содержит средство (26) торможения, функционально связанное с указанным ПТ-инвертором для передачи команд управления на средство (26) торможения.5. Приводная система гребного винта по п.4, отличающаяся тем, что указанное средство (26) торможения представляет собой тормоз, например фрикционный или магнитный, выполненный отдельно от указанного второго электродвигателя.6. Способ обеспечения движения и управления по курсу надводным судном, согласно которому судно приводят в движение посредством азимутальной силовой установки (6), содержащей силовую гондолу (1), расположенную вне корпуса судна ниже ватерлинии, первый электродвигатель (2) или аналогичный приводной агрегат, установленный внутри указанной гондолы для обеспечения вращения гребного винта (4), связанного с указанной гондолой, и узел (8) вала, связанный с указанной гондолой и несущий ее с возможностью разворота гондолы относительно корпуса судна (9), при этом указанную азимутальную силовую установку (6) разворачивают относительно корпуса указанного судна (9) в соответствии с командой рулевого управления, поступающей от устройства (38) рулевого управления судном, отличающийся тем, что посредством датчика (16), функционально связанного с модулем (34) управления, определяют угловое положение азимутальной силовой установки (6) по курсу, в модуле (34) управления производят обработку информации, содержащейся в команде рулевого управления, поступившей от указанного устройства (38) управления, и информации об угловом положении, поступающей от указанного датчика (16), основываясь на результатах указанной обработки, произведенной в указанном модуле (34) управления, разворачивают указанную азимутальную силовую установку (6) через механическую силовую передачу (40), связанную с указанным вторым электродвигателем (20), и подают электрическую мощность на указанный второй электродвигатель (20) также на основе результатов указанной обработки.7. Способ по п.6, отличающийся тем, что разворот указанной азимутальной силовой установки (6) осуществляют посредством кругового зубчатого обода (10), шестерни или червяка (12), выполненных с возможностью взаимодействия с указанным зубчатым ободом, и редуктора (22), установленного между указанным зубчатым ободом и указанным вторым электродвигателем (20).8. Способ по п.6 или 7, отличающийся тем, что питание указанного второго электродвигателя осуществляют через ПТ-инвертор, а требуемую регулировку скорости разворота указанной азимутальной силовой установки (6) производят посредством соответствующей регулировки электрической мощности, поступающей от указанного ПТ-инвертора.9. Способ по п.8, отличающийся тем, что остановку разворота указанной азимутальной силовой установки (6) и/или ее удержание в развернутом положении осуществляют с помощью средства (26) торможения, управляемого от ПТ-инвертора.10. Способ по любому из пп.6-9, отличающийся тем, что обработку указанной команды рулевого управления и указанной позиционной информации в указанном модуле управления производят посредством устройства обработки данных, такого как микропроцессор или модуль управления мощностью.11. Способ по любому из пп.6-10, отличающийся тем, что торможение разворота указанной азимутальной силовой установки осуществляют посредством электрического генератора, связанного с азимутальной силовой установкой (6) через механическую силовую передачу (40), с подачей генерируемой при этом электрической энергии в электрическую сеть.12. Способ по п.11, отличающийся тем, что в качестве электрического генератора используют указанный второй электродвигатель (20), работающий в режиме генератора.

Похожие патенты:

Движители маломерных судов, классификация и принципиальное устройство.

Приступая к изучению существующих движителей судов необходимо дать определение этому понятию. Судовой движитель - это устройство для преобразования работы энергетической установки судна в тягу, обеспечивающую его поступательное движение. Тяга движителя образуется за счет реактивных сил, возникающих при отбрасывании рабочей среды в сторону, обратную направлению поступательного движения судна. По характеру рабочей среды движители в настоящее время условно делятся на гидравлические (рабочая среда - вода), воздушные (воздух) и газоводометные (водовоздушная смесь). В свою очередь гидравлические движители подразделяются на лопастные (весло, гребной винт, плицы гребного колеса и т.п.) и нелопастные (газоводометные движители). Промежуточное место в этой классификации отдается водометному движителю.

Гидравлические движители широко применяются на всех судах водоизмещающего типа, воздушные движители - на быстроходных судах типа СВП и экранопланах. Из перечисленных движителей более подробно в пособии рассмотрены гребной винт (как основной из движителей, применяющихся на судах) и водометный движитель движение. Тяга движителя образуется за счет реактивных сил, возникающих при отбрасывании рабочей среды в сторону, обратную направлению поступательного движения судна. По характеру

рабочей среды движители в настоящее время условно делятся на гидравлические (рабочая среда - вода), воздушные (воздух) и газоводометные (водовоздушная смесь). В свою очередь гидравлические движители подразделяются на лопастные (весло, гребной винт, плицы гребного колеса и т.п.) и не лопастные (газоводометные движители). Промежуточное место в этой классификации отдается водометному движителю. Гидравлические движители широко применяются на всех судах водоизмещающего типа, воздушные движители - на быстроходных судах типа СВП и экранопланах. Из перечисленных движителей более подробно в пособии рассмотрены гребной винт (как основной из движителей, применяющихся на судах) и водометный движитель.

В предыдущем параграфе мы сказали, что существует пять основных типов силовой установки на судне, при этом, каждый из них характеризуется своей схемой валопровода, т.е. механической системой передачи вращения коленчатого вала двигателя к движителю (винту). Рассмотрим по порядку (рис. 107):

1. На судне установлен обычный стационарный конвертированный высокооборотный двигатель, который размещен в центре кокпита, в районе мидель-шпангоута. Коленчатый вал соединен через редуктор (для уменьшения числа оборотов) прямым гребным валом с винтом (линейная схема валопровода). Установка удобна в обслуживании, эффективна, проста, не требует дополнительных конструкторских решений.

2. Тот же двигатель расположен в кормовой части судна. При такой компоновке теряется ряд преиму­ществ, появляются новые (место в кокпите, снижение шума в каюте).Крупный недостаток - постоянный дифферент на корму и необходимость применения углового редуктора (V- образная, или угловая схема валопровода).

3. Схема валопровода с поворотно-откидной колонкой (Z - об­разная передача) сочетая в себе преимущества стационарного дви­гателя и ПЛМ (большая мощность мотора, хорошая мореходность, откидывание колонки при наездах на препятствие, легкость работ с винтом и обслуживания колонки, выхлоп газов в воду и т.д.) обладает одним крупным недостатком - высокой стоимостью.

4. Применение водометного движителя облегчает судоводителю жизнь за счет отсутствия каких-либо деталей, выступающих ниже киля судна, но достаточно усложняет ее за счет изменения ходовых качеств судна и, прежде всего, ухудшения управляемости. Двигатель устанавливается несколько дальше от кормы, чем в предыдущих двух случаях, что уменьшает дифферент на корму, отпадает необходимость в сцепной и реверсивной муфте

5. Валопровод подвесных лодочных моторов имеет Г-образную форму, при которой связь двигателя с движителем (винтом) осуществляется через редуктор с помощью промежуточного, т.н. торсионного, вала (рессоры). ПЛМ не занимает полезной площади кокпита, удобен в обслуживании и достаточно дешев

В ряде рассматриваемых вариантов валопроводов применяемые редукторы позволяют одновременно осуществлять реверсирование движителей - изменение направления вращения на противоположное. В общем случае, реверсирование осуществляется тремя способами : реверсом главного двигателя, включением реверсивной передачи и реверсом самого движителя. Реверс главного двигателя - изменение направления вращения коленчатого вала двигателя на обратное, и соответственно, изменение направления тяги винта. Такой реверс обеспечивается реверсивным устройством самого двигателя, основной частью которого яв­ляется передвижной распределительный вал, обеспечивающий заданную последовательность подачи топлива в цилиндры, в результате чего коленчатый вал двигателя начинает вращаться в обратном направлении. Реверсивная передача - это передача, с помощью которой изменяется направление вращения гребного вала (гребным называют вал, на котором закреплен гребной винт) на противоположное при неизменном направлении вращении коленчатого вала двигателя

Реверсирование достигается за счет реверсивных зубчатых редукторов, гидравлической передачи или соединительно-разъединительных муфт, позволяющих отключать часть редуктора с одним направлением вращения и подключать - с другим. На катерах применяются реверс - редукторы (реверсивная муфта) - специальный механизм, обеспечивающий изменение направления вращения гребного вала судна при неизменном направлении вращения коленчатого вала судового двигателя с включением в конструкцию редуктора для снижения или мультипликатора для повыше­ния числа оборотов вала. Реверс-редуктор соединяется с коленчатым валом фланцевыми соединениями посредством промежуточного вала либо непосредственно (см. рис. 108), ведомый вал - с гребным валом. Полость редуктора заполняется маслом, для проверки наличия и уровня которого есть указатель уровня (мерная линейка). Реверс движителя - изменение направления упора, создаваемого гребным винтом, обес­печивается поворотом лопастей у винтов регулируемого шага (ВРШ).

Гребной винт - устройство, преобразующее вращение вала двигателя в упор - силу, толкающую судно вперед. Он состоит из ступицы и нескольких (две и более) лопастей. Лопасть судового гребного винта представляет собой гидродинамический профиль, работающий под определенным углом наклона к водному потоку, отбрасывая его и создавая таким образом упор. Лопасть имеет входящую и выходящую кромки

Рис. 108. Два вида углового редуктора для стационарного двигателя:

а - с коротким промежуточным карданным валом;

б - закрепленный на двигателе.

и рабочую (нагнетающую) поверхность. Физическая суть работы гребного винта достаточно проста - при вращении на поверхности его лопастей, обращенных в сторону движения судна образуется разрежение, а обращенных назад - повышенное давление воды. Разность давлений создает силу, одна из составляющих которой и двигает судно вперед. Упор в большой степени зависит от угла атаки профиля лопасти. Оптимальное значение этого угла для быстроходных катеров 4 - 8°.

Основные понятия при рассмотрении темы и характеристик гребного винта:

Шаг винта - геометрическое перемещение (расстояние) любой точки лопасти вдоль оси за один полный оборот гребного винта при условии, что он совершает его в условно твердой среде.

Диаметр винта - диаметр окружности в которую вписаны спрямленные лопасти гребного винта (рис.109)

Шаговое отношение - отношение шага винта к диаметру

Дисковое отношение - отношение площади спрямленных лопастей (без ступицы) к площади диска, диаметр которого равен диаметру гребного винта (рис. 111). Шаговое и дисковое отношения являются основными параметрами гидродинамических характе ристик гребного винта, от которых зависит степень использования мощности двигателя и достижение максимально возможной скорости судном. Каждому гребному винту конкретного размера и фиксированного шага присуща своя винтовая характеристика. В принципе, для каждого корпуса судна и двигателя должен подбираться свой оптимальный гребной винт. Процесс расчета гребного винте сложен и базируется на использовании существующих графиков и диаграмм определения диаметра и шага винта в зависимости от мощности на валу. Для малых нагрузок и больших скоростей обычно выбирается двухлопастной гребной винт, для нормальных нагрузок (на катерах) - трехлопастной, для больших нагрузок и малых скоростей - четырехлопастной. Применение пятилопастного гребного винта значительно уменьшает вибрацию.

Скольжение винта - явление, возникающее при работе гребного винта в водной среде под нагрузкой, представляет собой разность между расчетным шагом винта и фактически пройденным расстоянием за один оборот. Скольжение почти никогда не бывает менее 15% шага винта, в большинстве случаев равно 30%, иногда - около 45-50% шага винта.

Коэффициент полезного действия (КПД) винта – отношение полезно используемой мощности к затраченной мощности двигателя, зависит, в основном, от диаметра и частоты вращения винта. КПД является оценкой эффективности работы гребного винта, его максимальная величина может достигать 70-80%, на малых судах 45-50%. Знать КПД винта необходимо для производства расчетов проектируемой скорости судна. КПД гребных винтов рассчитывается также по многочисленным графикам и диаграммам, основой которых служит коэффициент мощности (коэффициент нагрузки) - отношение произведения мощности двигателя, отданной винту, на частоту его вращения к поступательной скорости винта в попутном потоке

Большинство гребных винтов работает с коэффициентами нагрузки в пределах от 1 до 10. Структура коэффициента нагрузки показывает, что к высокому КПД гребного винта приводят небольшая мощность двигателя, низкая частота вращения и высокая скорость. Направление вращения гребного винта (рис. 110) в судовождении (правое - по часовой стрелке, левое -против часовой стрелки) устанавливают глядя с кормы в нос при работе винта на передний ход и определяют только для переднего хода.

Кавитация - явление "вскипания" воды и образования пузырьков пара на засасывающей стороне лопасти винта. При разрушении пузырьков создаются огромные местные давления, что является причиной выкрашивания лопасти. При длительной работе эти разрушения достигают больших величин, сказывающихся отрицательно на работе винта. Вторая стадия кавитации - возникновение на лопасти сплошной каверны, которая иногда может замыкаться даже за ее пределами.

Развиваемый винтом упор падает из-за резкого увеличения лобового сопротивления и искажения формы лопастей. При изменении шага и диаметра винта больше или меньше оптимальных значений возникают моменты, когда двигатель или не в состоянии вращать винт с большей частотой оборотов (не развивает номинальной мощности), либо, наоборот, не только развивает, но и легко превышает значение номинальной частоты вращения коленвала, а поскольку упор винта мал -судно все равно не развивает большой скорости. В этом случае вступают в силу понятия легкий (тяжелый) винт, которые также относятся к числу винтовых характеристик, о. которых было сказано выше.

Гребные винты изготавливают из бронзы, латуни, нержавеющей и углеродистой сталей, чугуна. Для гребных винтов малых судов применяют пластмассу. Металлические винты делаются литыми с последующей доводкой (обработкой).

Задача учета меняющегося сопротивления корпуса судна при изменении его нагрузки и более эффективного использования двигателя в этих условиях достаточно успешно решается применением гребного винта изменяемого шага (винт "мультипитч", не путать с винтом регулируемого шага -ВРШ). Ступица винта - металлическая, взаимозаменяемые лопасти - из полиамидных смол (последнее время из них изготовлена и ступица винта). Лопасти имеют жестко закрепленные пальцы (рис. 112), которые проходят в отверстия в торце носовой части ступицы 6 и входят в пазы поводка 4, имеющего мерную шкалу.

При повороте любой лопасти вокруг ее оси происходит синхронный разворот всех лопастей в сторону увеличения (уменьшения) шага винта. Закрепление лопастей в выбранном положении осуществляется гайкой 3. Втулка 5 имеет внутренний диаметр, равный диаметру гребного вала мотора. От осевого перемещения во втулке винт фиксируется гайкой 3 и стопорным винтом 8. Операция смены шага занимает при навыке 3-5 мин и не требует подхода к берегу и снятия винта. Для ПЛМ "Вихрь" такие винты выпускал Черноморский судостроительный завод.

Гребные винты регулируемого шага отличаются сложностью устройства, массивной ступицей и большой стоимостью, поскольку разворот лопастей для изменения шага винта у них производится дистанционно, в процессе работы (вращения). О таких винтах шла речь, когда мы говорили об изменении режима движения судна от "полного вперед" до "стоп" и "полного назад" только с помощью движителя. Преимущества ВРШ: возможность использования полной мощности двигателя на различных режимах движения судна и получения всего диапазона скоростей без изменения направления и частоты вращения гребного вала; экономия горючего и увеличение моторесурса двигателя. Недостатки ВРШ: сложность конструкции, снижение КПД двигателя из-за увеличенного размера ступицы и искажения профиля лопастей при их развороте на промежуточных режимах работы, низкая эффективность на заднем ходу. Для повышения КПД гребного винта на тяжелых водоизмещающих судах достаточно часто применяется кольцевая профилированная насадка (рис. 113), представляющая из себя замк­нутое кольцо с плоско-выпуклым профилем.. Площадь входного сечения насадки больше площади выходного, винт устанавливается в наиболее узком месте и с минимальным (0,01 D винта) зазором между краем лопасти и внутренней поверхностью насадки. При работе винта засасываемый поток увеличивает скорость из-за уменьшения проходного сечения насадки, вследствие чего уменьшается скольжение винта. Дополнительный упор создается и на самой насадке (из-за обтекания водой подобно - крылу). Действие водометного движителя основано на известном законе Ньютона: масса воды, отброшенная движителем в корму, создает в виде реакции упорное давление, движущее судно вперед.

Водометный движитель (водомет) можно представить себе в виде мощного насоса, забирающего воду из-под днища и выбрасывающего ее за транцем из сопла над водой. От гребного винта водомет отличается только тем, что винт (колесо насоса) установлен в трубе внутри судна. Управление судном и движение задним ходом в этом случае осуществляется различными способами. Наиболее у нас применимый способ управления - поворотом струи в выпускном сопле с помощью двустворчатого реверсивно-рулевого устройства, состоящего из двух плоских пластин (рулей), соединенных между собой и шарнирно навешенных на реверсивную коробку. В этом случае на переднем ходу рули перекладываются параллельно друг другу, изменяя направление выбрасываемой струи в ту или другую сторону, на заднем ходу судно не управляется. Возможно применение поворотного сопла и реверсивной заслонки, а также, поворотного водомета (рис. 114), что значительно повышает маневренность судна. Водометы используют преимущественно на легких быстроходных катерах, где большая мощность сочетается с малым весом катера.

Воздушные винты находят очень редкое применение на маломерных судах из-за низкого КПД, больших размеров и большого количества других недостатков и проблем, с которыми встречаются конструкторы, проектируя судно с таким движителем. Воздушные винты незаменимы при изготовлении судов-амфибий (рис. 115, 116), судов на воздушной подушке, т.е. таких судов, для которых подстилающей поверхностью может быть болото, снег, лед, ровный песок и т.п. Чаще других применяются двухлопастные винты. Существуют соответствующие формулы для расчета тяги винта, ширины лопасти, шага, диаметра и др. характеристик винта. Воздушные винты для катеров чаще всего выполняют деревянными, клееными из реек.

Заканчивая тему движителей и подводя краткие итоги можно ут­верждать, что максимальную ско­рость, наибольшую экономичность и надежность, а также наибольшую тягу из существующих движителей создает гребной винт. Наименьшие осадка и материальные потери для судоводителя при касании грунта достигаются при использовании водометных движителей, а упрощенный монтаж и удобство при обслуживании возможны при эксплуатации подвесных моторов и поворотно-откидных колонок.

Чтобы судно могло двигаться с постоянной скоростью, к нему нужно приложить движущую силу, равную силе сопротивления при этой скорости и противоположно направленную. В отдельных случаях эта сила создается буксированием, но чаще всего - специальными устройствами, которые называются судовыми движителями .
В соответствии со сложившимися традициями термин «судовые движители», как и ряд других подобных, означает как указанные устройства, так и науку (раздел теории корабля), их изучающую.
Судоходство на Земле существует уже несколько тысячелетий, но во времена парусных (и весельных) судов науки о ходкости судов не было. Скорость парусных судов зависела от скорости ветра, для гребных судов также не требовались какие-либо расчеты. Настоятельная необходимость выполнения расчетов ходкости возникла лишь тогда, когда на судах стали применяться механические двигатели (паровые машины).
Видимо, первыми движителями, которые использовались на плотах и подобных им простейших плавсредствах, были шест и весло. Суда древности были преимущественно весельными, причем у крупнейших из них весла располагались в три ряда, их общее число достигало 300, длина - 15 м, на одном весле работало до 7 чел. Скорость таких судов была около 5 уз. Пика своего расцвета весельные суда достигли много веков назад. В настоящее время весла используются в качестве основного движителя лишь на спортивных судах, рабочих и спасательных шлюпках и других мелких судах.
Другим древним движителем был парус, иногда в комбинации с веслами. Парусные суда оказались более совершенными, они использовали энергию внешней среды - воздуха, не требуя размещения большого числа гребцов. Первые парусники могли двигаться по ветру, но по мере совершенствования парусного вооружения люди научились, двигаясь галсами, перемещаться в требуемом направлении, независимо от направления ветра. Наивысшего расцвета парусные суда достигли примерно в конце 19 в., их скорость при благоприятном ветре достигала 20 уз. Но появление и развитие механических установок на судах привело к постепенному переходу от парусных судов к пароходам. Парус сохранился на спортивных, учебных судах в качестве основного, на промысловых, некоторых исследовательских и т. п. судах - в качестве вспомогательного движителя.
В последние десятилетия в мировом судостроении наблюдается рост интереса к парусам как основному или, чаще, дополнительному типу движителей. Этот интерес обусловлен двумя главными причинами: возможностью экономии топлива при высоких ценах на него и экологической чистотой. Применение парусного вооружения позволяет значительно уменьшить мощность главного двигателя (дизеля) без существенной потери скорости. Достижения современной науки позволяют механизировать установку и уборку парусов, управление ими с целью получения наивысшей скорости хода в требуемом направлении, снизить массу при достаточной прочности и долговечности. В различных судостроительных странах, а также в России и Украине, выполнены разработки парусного вооружения судов, в том числе большого водоизмещения, однако о широком использовании парусов на транспортном флоте говорить преждевременно.
В глубокой древности, еще до нашей эры, было изобретено гребное колесо, которое приводилось во вращение животными (быками). Но колесные суда были вытеснены парусными. На новом уровне гребные колеса возродились в самом начале 19 в. (на судне «Клермонт» в 1802 г.; в России первым парусным судном считается построенная в 1815 г. «Елизавета»). Первые гребные колеса имели обод и неподвижные лопасти - плицы; КПД колес был сравнительно мал, глубина погружения -в несколько раз меньше диаметра. В 1829 г. было предложено колесо с поворотными плицами, что позволило повысить КПД и уменьшить диаметр колес; повышение оборотов двигателей (паровых машин) ведет к уменьшению их размеров.
Наиболее распространенный, эффективный и сравнительно простой движитель - гребной винт . Идея судового гребного винта в виде шнека, подобно применявшемуся в древности винту Архимеда (для перекачки жидкостей), впервые возникла у Леонардо да Винчи в 15 в., но в ту пору она не нашла применения. В 1752 г. винт в виде двухзаходного червяка предложил Д. Бернулли, но КПД такого движителя оказался невелик. Как указывают в литературе, случай помог усовершенствовать конструкцию винта: одно судно, оборудованное деревянным винтом, коснулось им грунта, значительная часть винта отломилась и всплыла, но, к удивлению экипажа судна, оно увеличило ход. С тех пор было предложено множество усовершенствований винтов. Менялись их размеры, формы контура и сечений лопастей и другие характеристики. Некоторые усовершенствования продолжают появляться до сих пор.
В середине 17 в. появились первые водометные движители. Водометный движитель представляет собой систему водопроточных каналов (в частном случае - один канал), расположенных внутри корпуса судна, по которым перемещается забортная вода с помощью специального насоса, чаще всего осевого (винт в трубе). С помощью заслонок поток воды направляется в те или иные каналы (в случае одного канала изменяется направление движения струи, выходящей из канала в корме), что позволяет изменять направление движения судна.
К характерным особенностям водометных движителей можно отнести хорошую защищенность рабочего органа (расположенного в канале внутри корпуса; входное отверстие канала снабжено решеткой, которая препятствует попаданию крупных предметов в канал) и прекрасные маневренные качества (возможность двигаться передним и задним ходом, разворачиваться почти на месте благодаря соответствующей установке заслонок). Но эти движители отличаются большой массой (в которую входит система водопроточных каналов с водой внутри корпуса), занимают большой объем, затрудняя размещение полезного груза, обладают сравнительно невысоким КПД. Строго говоря, КПД водометного движителя - понятие достаточно условное, поскольку упор такого движителя создается на корпусе и не всегда удается точно разделить силы сопротивления и упора. Грубо ориентировочно, КПД обычного водометного движителя может составлять примерно 30 %.
Долгое время водометные движители мало применялись на судах. Считалось, что область их применения ограничивается сравнительно тихоходными судами, плавающими на мелководном или засоренном фарватере (например, такие суда использовались на лесосплаве). Но примерно с середины XX в. их популярность стала возрастать. Этому способствовали два обстоятельства. Во-первых, вместо развитой системы водопроточных каналов было предложено устраивать один короткий канал в кормовой оконечности судна, обеспечивая управление судном с помощью заслонок, отклоняющих струю движителя в нужную сторону. Во-вторых, было показано, что КПД водометного движителя на быстроходных судах может достигать 60 % и более, тогда как у обычных гребных винтов в этих условиях он может снижаться из-за кавитации.
Сравнительно недавно был предложен своеобразный водометный движитель для подводных лодок, торпед и других плавучих объектов, имеющих кормовую оконечность в форме тела вращения. Этот движитель представляет собой ряд лопастей, вращающихся вместе с кольцом, установленным заподлицо с наружной обшивкой. Снаружи установлено кольцо типа направляющей насадки; от гребного винта в насадке эта конструкция отличается тем, что винт в насадке располагается за пределами корпуса.
Около 1930 г. были предложены крыльчатые движители. Эти движители состоят из барабана, установленного внутри корпуса заподлицо с днищем и имеющего вертикальную или почти вертикальную ось вращения, и нескольких лопастей, расположенных по окружности барабана. При вращении барабана лопасти совершают колебательные движения, в результате чего создается упор, направление которого может быть произвольным, а величина - изменяться от нуля до максимального значения.
Крыльчатый движитель одновременно является прекрасным средством управления. Судно, оборудованное двумя крыльчатыми движителями, расположенными в оконечностях, может двигаться передним или задним ходом, лагом, разворачиваться на месте. Но такой движитель сравнительно сложный и громоздкий, требует наличия протяженного участка плоского днища в районе установки, неудобен подвод мощности к нему, при скоростях свыше 20 уз возникает кавитация. КПД крыльчатого движителя меньше, чем гребного винта.
Новые, иногда довольно экзотические конструкции судовых движителей продолжают появляться до сих пор. Среди наиболее известных можно назвать магнитогидродинамический (МГД) движитель, имеющий канал, окруженный магнитной обмоткой, по которой течет постоянный ток. Как известно из физики, катушка с током выталкивает расположенный внутри нее проводник, каким является морская вода. Реакция отбрасываемой струи движет судно вперед.
Разработкой МГД-движителей занимаются в ряде стран, например в Японии. Наиболее серьезные проблемы связаны со слабой проводимостью морской воды, что требует использования сверхпроводящих обмоток. КПД испытанных моделей МГД-движителей крайне мал, он не достигает 10 %. К преимуществам таких движителей можно отнести прямое преобразование электроэнергии в движение (не требуется двигатель), отсутствие движущихся частей, малую шумность.
Прямое преобразование электроэнергии в движение потока воды осуществляется также в электрогидравлическом движителе. Внутри расширяющейся к корме трубы имеется своеобразный отражатель с отверстиями для прохода воды и определенным образом расположенными электродами, между которыми возникают электрические разряды. Вода выталкивается из преобразователя в корму, через отверстия поступает новая, и процесс повторяется, причем движение получается почти непрерывным.
Для подводных лодок был предложен роторный движитель, состоящий из обода, расположенного в плоскости шпангоута в средней части корпуса и имеющего большое количество лопастей. Заметим, что подобный движитель с насадкой выше назван как разновидность водометного движителя. Лопасти имеют возможность поворачиваться (наподобие винта регулируемого шага, но за время одного оборота ротора углы их установки могут изменяться). Такие движители называют движителями с циклической перекладкой лопастей. Роторов на судне должно быть не меньше двух, вращающихся в разные стороны, иначе появляется большой крутящий момент, передаваемый на корпус в виде кренящего. При этом лодка может двигаться с различными скоростями, маневрировать в горизонтальной и вертикальной плоскостях без установки вертикальных и горизонтальных рулей, что уменьшает сопротивление выступающих частей.
Известен также своеобразный способ движения по воде - с помощью одного или нескольких колес, катящихся по воде («суда на колесах»). Колеса делаются гладкими и лишь незначительно погружаются в воду. Такой способ движения в какой-то мере подобен глиссированию, причем, как считают специалисты, он может быть достаточно эффективным с гидродинамической точки зрения.
В начале 20 в. появились башенные движители («роторы Флеттнера ») в виде цилиндрических башен с вертикальной осью вращения, которые приводились во вращение маломощными двигателями, установленными под верхней палубой. Принцип работы ротора Флеттнера основан на эффекте Магнуса, который заключается в появлении подъемной силы на цилиндре, вращающемся в потоке жидкости или газа. Величину этой силы можно рассчитать по формуле Жуковского:

где р - плотность среды (воздуха); v - скорость набегающего потока (ветра); Г - циркуляция скорости на контуре профиля (цилиндра), в данном случае равная произведению длины окружности ротора на линейную скорость его поверхности; l - длина (высота ротора).

Упор ротора направлен перпендикулярно скорости ветра. Эти движители эффективнее парусов (мощность двигателя в десятки раз меньше мощности, «извлекаемой из воздуха»), но не могут убираться, чем представляют опасность при сильном ветре.

Известный советский кораблестроитель профессор В. Г. Павленко предложил устанавливать по бортам судна специальные плавники, получившие название «плавники Павленко», которые являются вспомогательным средством движения. При плавании на волнении, когда скорость судна снижается из-за увеличения сопротивления и других причин, плавники, изгибаясь от давления воды, обусловленного бортовой качкой, создают дополнительный упор, увеличивая скорость судна. Такие плавники, насколько нам известно, не получили распространения на флоте, но управляемые крылья, устанавливаемые в районе скул в средней части многих судов с целью уменьшения бортовой качки, способствуют и некоторому увеличению скорости хода на волнении.

Этот обзор не претендует на полноту, но позволяет судить о том, насколько разнообразны могут быть судовые движители. Предлагалось множество других конструкций, некоторые из них были осуществлены практически, преимущественно на небольших судах или плавучих средствах и в единичных экземплярах, другие же существовали только на бумаге.

Долгое время характеристики судовых движителей не рассчитывались, а выбирались по опыту, на глазок. Для парусных судов проблемы расчета парусов вообще не существовало: скорость судна зависела от скорости и направления ветра. Но с появлением паровых машин возникла необходимость в выполнении расчетов ходкости с определением и сопротивления движению, и характеристик движителей, которые должны были соответствовать установленным двигателям. Первая теоретическая работа, посвященная расчету гребного весла, была опубликована Л. Эйлером в его книге «Полное умозрение строения и вождения кораблей» в 1778 г. Весла, рассмотренные Л. Эйлером, отличались своеобразием конструкции и принципа действия. Около 1865 г. англичане Ранкин и Фруд создали теорию идеального движителя, с основными положениями которой мы скоро познакомимся. В начале 20 в. (примерно в период 1910-1920 гг.) появилось несколько теорий, относящихся к гребным винтам. Среди них можно назвать паральную теорию (российский профессор Брикс, 1914-1922 гг.), струйную теорию, в создание которой внесли вклад также отечественные ученые Джевецкий, Рузский, Сабинин, Юрьев. Наиболее известной и совершенной явилась вихревая теория гребного винта, созданная «дедушкой русской авиации» Н.Е. Жуковским в 1912-1918 гг. В последующие годы теория судовых движителей развивалась по многим направлениям, которые мы не рассматриваем. Назовем лишь вопросы взаимодействия винта и корпуса, проблемы кавитации гребных винтов, работу винтов в неравномерном потоке, винты регулируемого шага и в насадках.