Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Интерференция механических волн и света. Учитель физики С.В.Гаврилова

Волновая оптика Волновая оптика – раздел оптики, в котором свет рассматривается как электромагнитная волна.

Повторение Что вы знаете про электромагнитные волны? Распространяющееся в пространстве электромагнитное поле. Скорость в вакууме самая большая.

Повторение Перечислите свойства электромагнитных волн. Отражаются; Выполняется закон прямолинейного распространения; Преломляются, отражаются, поглощаются; Плоскополяризованные; Интерференция и дифракция;

интерференция Механических волн Света Звука

Волны, имеющие одинаковые частоты и постоянную разность фаз, называются когерентными.

Явление интерференции возможно, если Наложение когерентных волн Когерентные волны Усиление или ослабление волн в пространстве Постоянное во времени явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн называется интерференцией. Условия интерференции

Условия интерференционных максимумов и минимумов Условие максимума Наблюдается светлая полоса d 2 , d 1 геометрический ход лучей; d=d 2 -d 1 геометрическая разность хода - разность расстояний от источников волн до точки их интерференции; Δ d = d∙n - оптическая разность хода – геометрическая разность хода, умноженная на относительный показатель преломления среды. Условие максимума Условие max - амплитуда колебаний частиц среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в данной точке, равна целому числу длин волн.

Условия интерференционных максимумов и минимумов Условие минимума Условие минимума Наблюдается тёмная полоса Условие min - амплитуда колебаний частиц среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу длин полуволн

Распределение энергии при интерференции Волны несут энергию При интерференции энергия перераспре- деляется Концентрируется в максимумах, не поступает в минимумы

История открытия интерференции света Явление интерференции света было открыто в 1802 году, когда англичанин Т. Юнг, врач, астроном и востоковед, человек с очень разносторонними интересами, провёл ставший теперь классическим "опыт с двумя отверстиями". 13 июня 1773 г. – 10 мая 1829 г.

Интерференция света Световые волны от различных источников (кроме лазера) некогерентны Когерентность достигается разделением света от одного источника на части Интерференцией света называется явление наложения световых пучков, в результате которого образуется картина чередующихся светлых и темных полос.

Классический опыт Юнга «Я сделал маленькую дырочку в оконной ставне и покрыл ее куском толстой бумаги, которую я проколол тонкой иглой. На пути солнечного луча я поместил бумажную полоску шириной около одной тридцатой дюйма и наблюдал ее тень или на стене или на перемещаемом экране. Рядом с цветными полосами на каждом краю тени сама тень была разделена одинаковыми параллельными полосами малых размеров, число полос зависело от расстояния, на котором наблюдалась тень, центр тени оставался всегда белым. Эти полосы были результатом соединения частей светового пучка, прошедших по обе стороны полоски и инфлектировавших, скорее дифрагировавших, в область тени». Т. Юнг доказал правильность такого объяснения, устраняя одну из двух частей пучка. Интерференционные полосы при этом исчезали, хотя дифракционные полосы оставались. Этот опыт наглядно доказал, что свет - не поток частиц, как считалось со времен Ньютона, а волна. Только волны, по-разному складываясь, способны и усиливать, и гасить друг друга - интерферировать.

Интерференционная картина: чередующиеся светлые и темные полосы Классический опыт Юнга Волны интерферируют в области перекрытия Условие max: Условие min: d- оптическая разность хода волн - длина волны

цвет Длина волны, нм Частота,ТГц красный 760-620 385-487 Оранже вый 620-585 484-508 жёлтый 585-575 508-536 зелёный 575-510 536-600 голубой 510-480 600-625 синий 480-450 625-667 Фиолето вый 450-380 667-789 Изучая интерференционные полосы, Юнг впервые определил длину и частоту световых волн разного цвета. Современные значения даны в таблице.

С помощью своей теории интерференции Юнг впервые сумел объяснить хорошо известное явление – разноцветная окраска тонких плёнок (масляные плёнки на воде, мыльные пузыри, крылья стрекоз…)

Интерференция в тонких пленках Когерентные световые волны, отражающиеся от верхней и нижней поверхности, интерферируют Результат интерференции зависит от толщины пленки, угла падения лучей и длины волны света В белом света пленка имеет радужную окраску, т.к. толщина пленки неодинакова и интерференционные максимумы для волн разной длины наблюдаются в разных местах пленки

Кольца Ньютона. Волны 1 и 2 когерентны. Волна 1 отражается от границы стекло-воздух Волна 2 – от границы воздух- стекло Интерференци-онная картина возникает в прослойке воздуха между стеклянными пластинами

Спасибо за внимание Д.З. §67- 69


Волновые свойства света: интерференция, дифракция, поляризация Световые волны рассматриваются по своей природе как электромагнитные волны, обладающие всеми их свойствами. Волновая оптика – раздел оптики, объясняющий оптические явления на основе волновой природы света. Волновая оптика описывает такие оптические явления, как интерференция, дифракция, поляризация, дисперсия.

Интерференция света Электромагнитные волны, как и механические волны, обладают принципом суперпозиции, то есть, если в среде одновременно распространяются несколько волн, то они распространяются независимо друг от друга. Однако, в тех местах, где одни колебания накладываются на другие колебания, их амплитуды векторно складываются. При этом может наблюдаться как увеличение интенсивности света (когда накладываются волны с одинаковыми фазами), так и ослабление интенсивности (при сложении волн с противоположными фазами). Это явление получило название интерференции света. Интерференция света – это сложение двух и более волн, вследствие которого наблюдается устойчивая картина усиления и ослабления световых колебаний в разных точках пространства. Интерферировать могут лишь когерентные волны, т. е. волны имеющие одинаковую частоту и постоянную во времени разность фаз. Когерентные источники в природе отсутствуют, но они могут быть получены разными способами. Один из них показан на рисунке. Здесь показано, как с помощью экрана Э 1 с двумя узкими щелями получают из одного источника света S два когерентных. Интерференционную картину в виде чередующихся светлых и темных полос наблюдают на экране Э 2.

Интерференционные картины можно наблюдать на тонких масляных пленках на поверхности воды, мыльных пузырях, крыльях стрекоз, цвета побежалости на поверхности металла после нагрева. Явление интерференции в тонких пленках находит применение для определения длин волн излучения источников света, для контроля качества обработки полированной поверхности, определения коэффициента расширения тел при нагревании и т. д. Существуют специальные приборы – интерферометры, предназначенные для измерения длин тел, показателей преломления с большой точностью.

Дифракция света Дифракция – это способность волн огибать встречающиеся на их пути препятствия, отклоняться от прямолинейного распространения. Чтобы наблюдать дифракцию световых волн, необходимы определённые условия: либо размеры препятствий (или отверстий) должны быть очень малыми, либо расстояние от препятствия до наблюдаемой картины должно быть велико. Возьмем на пути лучей от точечного источника света S поставим преграду с очень маленьким отверстием диаметра d, тогда на экране Э увидим систему чередующихся светлых и тёмных колец (при условии, что d

Дифракционные картины нередко наблюдаются в естественных условиях. Например, цветные кольца, окружающие источник света, наблюдаемый сквозь туман или через запотевшее оконное стекло, или при рассматривании яркого источника через ресницы. Для наблюдения дифракции используются специальные приборы – дифракционные решетки. Дифракционная решетка (одномерная) представляет собой систему параллельных равноотстоящих друг от друга щелей равной ширины. Простейшая дифракционная решетка может быть изготовлена из стеклянной пластинки, на которой алмазным резцом нанесены параллельные царапины с неповрежденными промежутками между ними (щелями). Расстояние между соседними щелями называется периодом или постоянной решетки d (рис.).

где а – расстояние между соседними щелями, b – ширина щели. Разность хода Δ лучей, приходящихся в произвольную точку Р от двух соседних щелей будет:

Очевидно, колебания в точке Р будут усиливать друга, если разность фаз лучей будет равна 0 или отличатся на 2π, чему соответствует: где k = 0, 1, 2, 3. . . Тогда условием наблюдения максимумов (усиления колебаний) света будет: где k = 0, 1, 2, 3. . . Вследствие дифракции происходит неравномерное перераспределение световой энергии между максимумами. Дифракционная решетка является спектральным прибором. С ее помощью можно определять длины волн в спектрах излучения источников (например, звезд):

Поляризация света Как было показано выше, свет, излучаемый большинством источников, представляет собой наложение огромного количества волн, испущенных отдельными атомами. Так как атомы излучают независимо друг от друга, то пространственная ориентация векторов Е волн разных атомов произвольна. Такой свет называется естественным (рис. а) Луч, в котором колебания вектора Е происходят только в одном направлении (имеют полярность), называется плоскополяризованным (или линейнополяризованным) (рис. б). Плоскость, в которой совершает колебания вектор Е называется плоскость колебаний. Плоскость, в которой колеблется вектор Н (или В), назвали плоскостью поляризации. Угол между этими плоскостями 900. Естественный свет можно превратить в поляризованный с помощью приборов которые называются поляризаторами. При падении естественного света на границу раздела сред, с разными показателями преломления, отраженный и преломленный луч всегда поляризованы.


Явление интерференции происходит при взаимодействии двух и более волн одинаковой частоты, распространяющихся в различных направлениях. При этом оно наблюдается и у волн, распространяющихся в средах, и у электромагнитных волн. То есть интерференция является свойством волн как таковых и не зависит ни от свойств среды, ни от ее наличия. Интерференция


Устойчивая картина чередования максимумов и минимумов колебаний точек среды при наложении когерентных волн Когерентные волны – это волны одинаковой частоты с постоянной разностью фаз Интерференция С интерференционными явлениями мы сталкиваемся довольно часто: радужная окраска масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков все это проявление интерференции света.


Дифракция При явлении дифракции происходит разложение сложного света. Положение максимумов и минимумов, составляющих дифракционную картину, зависит от длины световой волны. Поэтому при наблюдениях в сложном свете, например в белом, где представлены различные длины волн, дифракционные максимумы для различных цветов окажутся на разных местах.




Дифракция Явление дифракции накладывает ограничения на применение законов геометрической оптики: Закон прямолинейного распространения света, законы отражения и преломления света выполняются достаточно точно только, если размеры препятствий много больше длины световой волны. Дифракция накладывает предел на разрешающую способность оптических приборов: - в микроскопе при наблюдении очень мелких предметов изображение получается размытым - в телескопе при наблюдении звезд вместо изображения точки получаем систему светлых и темных полос.


Диспероссия Диспе́россия волн - различие фазовых скоростей волн в зависимости от их частоты. Диспероссия волн приводит к тому, что волновое возмущение произвольной негармонической формы претерпевает изменения (диспергирует) по мере его распространения. Иногда под дисперсией волны понимают процесс разложения широкополосного сигнала в спектр, например, при помощи дифракционных решёток.


Диспероссия Красный закат, один из результатов разложения света в атмосфере Земли. Причиной этого явления является зависимость показателя преломления газов, составляющих земную атмосферу, от длины волны света. Радуга, чьи цвета обусловлены дисперсией, один из ключевых образов культуры и искусства. Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах. В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.



Поляризация Поляризованной волной называется такая поперечная волна, в которой колебания всех частиц происходят в одной плоскости. Такую волну можно получить с помощью резинового шнура, если на его пути поставить преграду с тонкой щелью. Щель пропустит только те колебания, которые происходят вдоль нее.




Закон Малюса Линейно поляризованный свет можно наблюдать, например, в излучении лазера. Другой способ получения линейно поляризованного света состоит в пропускании естественного света через поляроид(поляризационный светофильтр), который свободно пропускает компоненту света, поляризованную вдоль выделенного направления, и полностью поглощает свет с перпендикулярной поляризацией. Если на такой поляроид падает линейно поляризованная волна, то интенсивность I прошедшего света будет зависеть от угла а между направлением поляризации падающего света и выделенным направлением самого поляроида следующим образом: I = I 0 cos 2 a


Эллипсометрия Эллипсометрия - совокупность методов изучения поверхностей жидких и твёрдых тел тел по состоянию поляризации светового пучка, отражённого этой поверхностью и преломлённого на ней. Падающий на поверхность плоско поляризованный свет приобретает при отражении и преломлении эллиптическую поляризацию вследствие наличия тонкого переходного слоя на границе раздела сред. Зависимость между оптическими постоянными слоя и параметрами эллиптически поляризованного света устанавливается на основании Френеля формул. На принципах эллипсометрии построены методы чувствительных бесконтактных исследований поверхности жидкости или твёрдых веществ, процессов адсорбции, коррозии и др.



«Преломление света» - Преломление света в разных жидкостях и стекле. Ход световых лучей Световые лучи и принцип Ферма. Геометрическое место всех таких фокусов негомоцентрических пучков называется каустикой. На фольгу выливалась ртуть, которая образовывала с оловом амальгаму. Характеристики света. Набор близких лучей света может рассматриваться как пучок света.

«Распространение света» - Ход лучей в тонкой линзе. Оптические приборы. 2. Луч света падает на поверхность воды под углом 300 к горизонту. Если изображение: -мнимое f < 0 -действительное f > 0 Если линза: -собирающая F > 0 -рассеивающая F < 0. D - расстояние от предмета до линзы. Линзы. Образование тени и полутени.

«Физика Миражи» - Вот одна из картин, которую можно увидеть. Исполнитель: ученик 9 класса Ремешевский Виталий Сергеевич. Астигматизм. Смешанные иллюзии. Левитация. Руководитель: учитель физики Долматова Татьяна Геннадьевна. Естественные, или созданные природой (например, мираж); Перевёртыши. В результате возникают два изображения.

«Дифракция света» - План урока: Дифракционные решетки используются для разложения электромагнитного излучения в спектр. Дифракция механических волн. Условия когерентности световых волн. Таким образом, волна после прохождения через щель и расширяется и деформируется. Опыт Т. Юнга. 1802 г. Дифракция света сопровождается интерференцией.

«Глаз человека» - Что такое полярное сияние? Почему мы иногда видим то, чего нет на самом деле? Область формирования радуги. А круги, ведь, совсем неподвижны. sin ? / sin ? = n1 / n2. Поэтому наблюдатель и видит изображение искаженным. Закон преломления света. Вывод: 90% информации приходит в наш мозг через глаза. Мы узнали, что законы оптики описываются с помощью тригонометрических функций.

«Интерференция и дифракция» - Бипризма Френеля. А) от тонкой проволочки; б) от круглого отверстия; в) от круглого непрозрачного экрана. Каждая точка волновой поверхности является источником вторичных сферических волн. Просветление оптики n(плёнки)

Всего в теме 7 презентаций