Вертолет - это винтокрылая машина, в которой подъемную силу и силу тяги создает винт. Несущий винт служит для поддержания и перемещения вертолета в воздухе. При вращении в горизонтальной плоскости несущий винт создает тягу(Т) направленную вверх, выполняет роль подъёмной силы(Y). Когда тяга несущего винта будет больше веса вертолета(G), вертолет без разбега оторвется от земли и начнет вертикальный набор высоты. При равенстве веса вертолета и тяги несущего винта вертолет будет неподвижно висеть в воздухе. Для вертикального снижения достаточно тягу несущего винта сделать несколько меньше веса вертолета. Поступательное движение вертолета(P) обеспечивается наклоном плоскости вращения несущего винта при помощи системы управления винтом. Наклон плоскости вращения винта вызывает соответствующий наклон полной аэродинамической силы, при этом ее вертикальная составляющая будет удерживать вертолет в воздухе, а горизонтальная — вызывать поступательное перемещение вертолета в соответствующем направлении.

Рис 1. Схема распределения сил

Конструкция вертолета

Фюзеляж является основной частью конструкции вертолета, служащей для соединения в одно целое всех его частей, а также для размещения экипажа, пассажиров, грузов, оборудования. Он имеет хвостовую и концевую балки для размещения хвостового винта вне зоны вращения несущего винта,и крыла (на некоторых вертолетах крыло устанавливается с целью увеличения максимальной скорости полета за счет частичной разгрузки несущего винта (МИ-24)).Силовая установка(двигатели) является источником механической энергии для приведения во вращение несущего и рулевого винтов. Она включает в себя двигатели и системы, обеспечивающие их работу (топливную, масляную, систему охлаждения, систему запуска двигателей и др.). Несущий винт(НВ) служит для поддержания и перемещения вертолета в воздухе, и состоит из лопастей и втулки несущего винта. Рулевой винт служит для уравновешивания реактивного момента, возникающего при вращении несущего винта, и для путевого управления вертолетом. Сила тяги рулевого винта создает момент относительно центра тяжести вертолета, уравновешивающий реактивный момент несущего винта. Для разворота вертолёта достаточно изменить величину тяги рулевого винта. Рулевой винт так же состоит из лопастей и втулки. Управление несущим винтом производится при помощи специального устройства, называемого автоматом перекоса. Управление рулевым винтом производится от педалей. Взлетно-посадочные устройства служат опорой вертолета при стоянке и обеспечивают перемещение вертолета по земле, взлет и посадку. Для смягчения толчков и ударов они снабжены амортизаторами. Взлетно-посадочные устройства могут выполняться в виде колесного шасси, поплавков и лыж

Рис.2 Основные части вертолета:

1 — фюзеляж; 2 — авиадвигатели; 3 — несущий винт (несущая система); 4 — трансмиссия; 5 — хвостовой винт; 6 — концевая балка; 7 — стабилизатор; 8 — хвостовая балка; 9 — шасси

Принцип создания подъемной силы винтом и система управления винтом

При вертикальном полете п олная аэродинамическая сила несущего винта выразится как произведение массы воздуха, протекающего через поверхность, сметаемую несущим винтом за одну секунду, на скорость уходящей струи:

где πD 2 /4 - площадь поверхности, ометаемой несущим винтом; V— скорость полета в м/сек; ρ — плотность воздуха; u — скорость уходящей струи в м/сек.

По сути сила тяги винта равна силе реакции при ускорении воздушного потока

Для того чтобы вертолет двигался поступательно, нужен перекос плоскости вращения винта, причем изменение плоскости вращения достигается не наклоном втулки несущего винта (хотя визуальный эффект может быть именно такой), а изменением положения лопасти в разных частях квандрантов описываемой окружности.

Лопасти несущего винта, описывая полный круг вокруг оси при его вращении, обтекаются встречным потоком воздуха по-разному. Полный круг - это360º . Тогда примем заднее положение лопасти за0º и далее через каждые90º полный оборот. Так вот лопасть в интервале от0º до180º - это лопастьнаступающая , а от180º до 360º -отступающая . Принцип такого названия, я думаю, понятен. Наступающая лопасть движется навстречу набегающему потоку воздуха, и суммарная скорость ее движения относительно этого потока возрастает потому что сам поток, в свою очередь, движется ей навстречу. Ведь вертолет летит вперед. Соответственно растет и подъемная сила.


Рис.3 Изменение скоростей набегающего потока при вращении винта для вертолета МИ-1 (средние скорости полета).

У отступающей лопасти картина противоположная. От скорости набегающего потока отнимается скорость, с которой эта лопасть как бы от него «убегает». В итоге имеем подъемную силу меньше. Получается серьезная разница сил на правой и левой стороне винта и отсюда явныйпереворачивающий момент . При таком положении вещей вертолет при попытке движения вперед будет иметь тенденцию к переворачиванию. Такие вещи имели место при первом опыте создания винтокрылых аппаратов.

Чтобы этого не происходило, конструктора применили одну хитрость. Дело в том, что лопасти несущего винта закреплены вовтулке (это такой массивный узел, насаженный на выходной вал), но не жестко. Они с ней соединены с помощью специальных шарниров (или устройств, им подобных). Шарниры бывают трех видов:горизонтальные, вертикальные и осевые.

Теперь посмотрим что же будет происходить с лопастью, которая подвешена к оси вращения на шарнирах. Итак, наша лопасть вращается с постоянной скоростью без каких-либо управляющих воздействий извне .


Рис. 4 Силы, действующие на лопасть, подвешенную ко втулке винта на шарнирах.

От0º до90º скорость обтекания лопасти растет, значит растет и подъемная сила. Но! Теперь лопасть подвешена на горизонтальном шарнире. В результате избыточной подъемной силы она, поворачиваясь в горизонтальном шарнире, начинает подниматься вверх (специалисты говорят «делаетвзмах »). Одновременно из-за увеличения лобового сопротивления (ведь скорость обтекания возросла) лопасть отклоняется назад, отставая от вращения оси винта. Для этого как раз и служит вертикальный шар-нир.

Однако при взмахе получается, что воздух относительно лопасти приобретает еще и некоторое движение вниз и, таким образом, угол атаки относительно набегающего потока уменьшается. То есть рост избыточной подъемной силы замедляется. На это замедление оказывает свое дополнительно влияние отсутствие управляющего воздействия. Это значит, что тяга автомата перекоса, присоединенная к лопасти, сохраняет свое положение неизменным, и лопасть, взмахивая, вынуждена поворачиваться в своем осевом шарнире, удерживаемая тягой и, тем самым, уменьшая свой установочный угол или угол атаки по отношению к набегающему потоку. (Картина происходящего на рисунке. ЗдесьУ - это подъемная сила,Х - сила сопротивления,Vy - вертикальное движение воздуха,α - угол атаки.)


Рис.5 Картина изменения скорости и угла атаки набегающего потока при вращении лопасти несущего винта.

До точки90º избыточная подъемная сила будет продолжать расти, однако из-за вышесказанного со все большим замедлением. После90º эта сила будет уменьшаться, но из-за ее присутствия лопасть будет продолжать двигаться вверх, правда все медленнее. Максимальную высоту взмаха она достигнет уже несколько перевалив за точку180º . Это происходит потому, что лопасть имеет определенный вес, и на нее действуют еще исилы инерции .

При дальнейшем вращении лопасть становится отступающей, и на нее действуют все те же процессы, но уже в обратном направлении. Величина подъемной силы падает и центробежная сила вместе с силой веса начинают опускать ее вниз. Однако при этом растут углы атаки для набегающего потока (теперь уже воздух движется вверх по отношению к лопасти), и растет установочный угол лопасти из-за неподвижности тягавтомата перекоса вертолета . Все происходящее поддерживает подъемную силу отступающей лопасти на необходимом уровне. Лопасть продолжает опускаться и минимальной высоты взмаха достигает уже где-то после точки0º , опять же из-за сил инерции.

Таким образом, лопасти вертолета при вращении несущего винта как бы «машут » или еще говорят «порхают». Однако это порхание вы, так сказать, невооруженным взглядом вряд ли заметите. Подъем лопастей вверх (как и отклонение их назад в вертикальном шарнире) очень незначительны. Дело в том, что на лопасти оказывает очень сильное стабилизирующее воздействие центробежная сила. Подъемная сила, например, больше веса лопасти в10 раз , а центробежная - в100 раз . Именно центробежная сила превращает на первый взгляд «мягкую» гнущуюся в неподвижном положении лопасть в жесткий, прочный и отлично работающий элемент несущего винта вертолета вертолета.

Однако несмотря на свою незначительность вертикальное отклонение лопастей присутствует, и несущий винт при вращении описывает конус, правда очень пологий. Основание этого конуса и естьплоскость вращения винта (см рис1.)

Для придания вертолету поступательного движения нужно эту плоскость наклонить, дабы появилась горизонтальная составляющая полной аэродинамической силы, то есть горизонтальная тяга винта. Иначе говоря, нужно наклонить весь воображаемый конус вращения винта. Если вертолету нужно двигаться вперед, значит конус должен быть наклонен вперед.

Исходя из описания движения лопасти при вращении винта, это означает, что лопасть в положении180º должна опуститься, а в положении0º (360º) должна подняться. То есть в точке180º подъемная сила должна уменьшиться, а в точке0º(360º) увеличиться. А это в свою очередь можно сделать уменьшив установочный угол лопасти в точке180º и увеличив его в точке0º (360º) . Аналогичные вещи должны происходить при движении вертолета в других направлениях. Только при этом, естественно, аналогичные изменения положения лопастей будут происходить в других угловых точках.

Понятно, что в промежуточных углах поворота винта между указанными точками установочные углы лопасти должны занимать промежуточные положения, то есть угол установки лопасти меняется при ее движении по кругу постепенно,циклично .Он так и называется циклический угол установки лопасти (циклический шаг винта ). Я выделяю это название потому, что существует еще иобщий шаг винта (общий угол установки лопастей). Он изменяется одновременно на всех лопастях на одинаковую величину. Обычно это делается для увеличения общей подъемной силы несущего винта.

Такие действия выполняетавтомат перекоса вертолета . Он изменяет угол установки лопастей несущего винта (шаг винта), вращая их в осевых шарнирах посредством присоединенных к ним тяг. Обычно всегда присутствуют два канала управления: по тангажу и по крену, а также канал изменения общего шага несущего винта.

Тангаж означает угловое положение летательного аппарата относительно его поперечной оси (нос вверх-вниз), акрен , соответственно, относительно его продольной оси (наклон влево-вправо).

Конструктивноавтомат перекоса вертолета выполнен достаточно сложно, но пояснить его устройство вполне можно на примере аналогичного узла модели вертолета. Модельный автомат, конечно, устроен попроще своего старшего собрата, но принцип абсолютно тот же.

Рис. 6 Автомат перекоса модели вертолета

Это двухлопастной вертолет. Управление угловым положением каждой лопасти осуществляется через тяги6 . Эти тяги соединены с так называемой внутренней тарелкой2 (из белого металла). Она вращается вместе с винтом и в установившемся режиме параллельна плоскости вращения винта. Но она может менять свое угловое положение (наклон), так как закреплена на оси винта через шаровую опору3 . При изменении своего наклона (углового положения) она воздействует на тяги6 , которые, в свою очередь, воздействуют на лопасти, поворачивая их в осевых шарнирах и меняя, тем самым, циклический шаг винта.

Внутренняя тарелка одновременно является внутренней обоймой подшипника, внешняя обойма которого - этовнешняя тарелка винта1 . Она не вращается, но может менять свой наклон (угловое положение) под воздействием управления по каналу тангажа4 и по каналу крена5 . Меняя свой наклон под воздействием управления внешняя тарелка меняет наклон внутренней тарелки и в итоге наклон плоскости вращения несущего винта. В итоге вертолет летит в нужном направлении.

Общий шаг винта меняется перемещением по оси винта внутренней тарелки2 при помощи механизма7 . В этом случае угол установки меняется сразу на обеих лопастях.

Для более лучшего понимания помещаю еще несколько иллюстраций втулки винта с автоматом перекоса.

Рис. 7 Втулка винта с автоматом перекоса (схема).


Рис. 8 Поворот лопасти в вертикальном шарнире втулки несущего винта.

Рис. 9 Втулка несущего винта вертолета МИ-8

ВЕРТОЛЁТЫ

Рис. 1. К объяснению принципа полёта вертолёта

Несущий винт (НВ) служит для поддержания и перемещения вертолета в воздухе.
При вращении в горизонтальной плоскости НВ создает тягу (Т), направленную вверх и т.о. выполняет роль создателя подъёмной силы (Y). Когда тяга НВ будет больше веса вертолета (G), вертолет без разбега оторвется от земли и начнет вертикальный набор высоты. При равенстве веса вертолета и тяги НВ вертолет будет неподвижно висеть в воздухе. Для вертикального снижения достаточно тягу НВ сделать несколько меньше веса вертолета. Сила (P) для поступательного движения вертолета обеспечивается наклоном плоскости вращения НВ при помощи системы управления винтом. Наклон плоскости вращения НВ вызывает соответствующий наклон полной аэродинамической силы, при этом ее вертикальная составляющая будет удерживать вертолет в воздухе, а горизонтальная - вызывать поступательное перемещение вертолета в соответствующем направлении.

Рис. 2. Основные части вертолета:

1 – фюзеляж; 2 – авиадвигатели; 3 – несущий винт; 4 – трансмиссия;5 – хвостовой винт;
6 – концевая балка; 7 – стабилизатор; 8 – хвостовая балка; 9 – шасси

Фюзеляж является основной частью конструкции вертолета, служащей для соединения в одно целое всех его частей, а также для размещения экипажа, пассажиров, грузов, оборудо-вания. Он имеет хвостовую и концевую балки для размещения хвостового винта вне зоны вращения НВ, и крыла (на некоторых вертолетах крыло устанавливается с целью увеличения максимальной скорости полета за счет частичной разгрузки – (МИ-24)). Силовая установка (двигатели) является источником механической энергии для приведения во вращение несу-щего и рулевого винтов. Она включает в себя двигатели и системы, обеспечивающие их работу (топливную, масляную, систему охлаждения, систему запуска двигателей и др.).
НВ служит для поддержания и перемещения вертолета в воздухе, и состоит из лопастей
и втулки НВ. Трансмиссия служит для передачи мощности от двигателя к несущему и рулевому винтам. Составными элементами трансмиссии являются валы, редукторы и муфты. Рулевой винт (РВ) (бывает тянущий и толкающий) служит для уравновешивания реактив-ного момента, возникающего при вращении НВ, и для путевого управления вертолетом. Сила тяги РВ создает момент относительно центра тяжести вертолета, уравновешивающий реактивный момент от НВ. Для разворота вертолёта достаточно изменить величину тяги РВ. РВ так же состоит из лопастей и втулки.

Система управления (СиУпр) вертолета состоят из ручного и ножного управления. Они включают командные рычаги (ручку управления, рычаг «шаг-газ» и педали) и системы проводки к НВ и РВ. Управление НВ-ом производится при помощи специального устрой-ства, называемого автоматом перекоса. Управление РВ производится от педалей.

Взлетно-посадочные устройства (ВПУ) служат опорой вертолета при стоянке и обеспе-чивают перемещение вертолета по земле, взлет и посадку. Для смягчения толчков и ударов они снабжены амортизаторами. Взлетно-посадочные устройства могут выполняться в виде колесного шасси, поплавков и лыж.

Рис. 3. Общий вид конструкции вертолёта (на примере боевого вертолёта МИ-24П).

Многие дети хоть раз в жизни видели в небе летящий вертолет. А у кого-то может быть есть вертолет на радиоуправлении. Вертолет может быть транспортом для быстрого передвижения и участником боевых действий на войне. Он летает так, что дух захватывает и невозможно оторвать взгляд. Но как же такая тяжелая железная машина может оторваться от земли и лететь в нужном направлении?

Давайте разбираться. На крыше вертолета закреплен огромный крутящийся винт с лопастями . Он выполняет функцию крыльев. Этот винт, вместе с еще одним винтом, поменьше способен поднять вертолет вверх, задержать его в воздухе и заставить лететь. Когда винт крутится, лопасти с силой захватываю поток воздуха и, при помощи аэродинамической силы, вертолет летит.

Аэродинамическая сила – это сила, с которой воздух действует на поверхность вертолета. Благодаря вращению лопастей винта над вертолетом создается зона пониженного давления, и частички воздуха как бы выталкивают его вверх. Загребая лопастями воздух, вертолет мчится вперед. Главный винт помогает вертолету лететь прямо вперед.

А при наклоне винта изменяется аэродинамическая сила. Благодаря этому вертолет может лететь не только вперед, но и вбок или даже назад. Но как же наклонить винт, чтобы заставить вертолет лететь вбок? Для этого надо изменить угол атаки. Что такое угол атаки? Каждая лопасть винта может оборачиваться вокруг своей оси (стержня). Угол атаки – это величина, на которую может «задраться» лопасть навстречу воздуху. Когда пилот увеличивает угол атаки сразу у всех лопастей, вертолет взлетает вверх, а когда угол атаки уменьшается – вертолет опускается. Если растет угол атаки лопасти, когда она будет находиться над носом вертолета, то сзади соответственно он уменьшится и вертолет полетит назад. А если растет угол атаки у лопасти пролетающей над левым бортом – вертолет полетит направо.

Если за рычагом управления опытный пилот, вертолет может даже летать вверх ногами, то есть вверх колесами. Вернее летать он так не сможет, а сможет только делать фигуры в воздухе. Для того, чтобы «кувыркнуться» вертолету хватит аэродинамической силы. Но летать вниз лопастями долго вертолет не может. Если сравнивать вертолет с самолетом, можно найти много отличий. Самолету нужно разогнаться, чтобы взлететь и он не может держаться вертикально в воздухе, ему нужно все время лететь вперед. А вертолет может подняться вверх, например, с крыши дома, и висеть в воздухе столько времени, сколько надо. Это позволило вертолету найти применение в разных областях нашей жизни.

Здравствуйте, наши уважаемые читатели. Начинающие пилоты зачастую имеют слабое представление о том, как управлять радиоуправляемым вертолетом. Ошибки в пилотировании приводят к падениям, столкновениям и иным неприятным для летательного аппарата последствиям. Действительно, управлять вертолетом сложнее по сравнению с радиоуправляемым квадрокоптером. Необходимо иметь хотя бы общие теоретические знания, чтобы отдавать правильные команды.

Хотя на радиоуправлении продаются в комплектации RTF (то есть в собранном виде), не торопитесь с запуском. Как минимум необходимо зарядить аккумулятор, соединиться с пультом и выполнить калибровку сервопривода, чтобы дальше управлять вертолетом без проблем. Совершенно нелишней окажется и корректировка рысканья.

Подключение пульта к радиоуправляемой модели вертолета выполняется в следующей последовательности:

  • включаем пульт управления;
  • вставляем аккумулятор в вертолет;
  • соединяем оба устройства.

Калибровка сервопривода радиоуправляемого аппарата проводится следующим образом:

  1. Вертолет ставим на горизонтальную поверхность и соединяем его с аппаратурой управления.
  2. Обращаем внимание на диск сервопривода. Он должен быть параллелен поверхности.
  3. Если диск не параллелен, производим его корректировку триммером тангажа.

Корректировку рысканья, чтобы управлять моделями без проблем, следует проводить так:

  1. Радиоуправляемый вертолет ставим на горизонтальную поверхность и соединяем его с пультом управления.
  2. Скорость вращения несущего винта плавно увеличиваем с помощью стика управления скоростью до начала смещения модели, но не допускаем ее взлета.
  3. При вращении фюзеляжа по часовой стрелке вращаем регулятор триммера корректировки против часовой стрелки до тех пор, пока вертолет не перестанет поворачиваться.
  4. При вращении фюзеляжа против часовой стрелки регулятор триммера корректировки поворачиваем по часовой стрелке до тех пор, пока радиоуправляемый беспилотник не перестанет вращаться.

Нелишним будет освоить, как управлять газом, заодно потренировавшись в посадке летательного аппарата.

Для этого:

  • берем модель за шасси, плавно прибавляем и уменьшаем газ. Так вы получите представление о возникающей подъемной силе;
  • устанавливаем радиоуправляемый беспилотник на горизонтальную поверхность и плавно отклоняем стик, добавляя газ. Набираем высоту, после чего так же плавно приземляемся.

Освоиться, как управлять моделями вертолетов, помогут симуляторы. Они очень точно моделируют основные ситуации.

Основы управления вертолетом

Хотя речь идет о моделях на радиоуправлении, к ним применимы принципы управления настоящими вертолетами.


Мы рассмотрим основные понятия, как управлять радиоуправляемым вертолетом, расскажем, какие силы оказывают влияние на летательный аппарат и как они распределяются в разных режимах полета. Теория поможет вам быстрее освоить управление, вы поймете, почему модель ведет себя так, а не иначе.

Эффект земли

Так называемый эффект земли можно наблюдать при зависании вертолета над поверхностью на высоте, несколько меньшей диаметра основного ротора.


Создаваемая лопастями ротора скорость воздушного потока не способна достигнуть максимальных значений из-за небольшого расстояния радиоуправляемой модели до поверхности. Летательный аппарат оказывается над своеобразным пузырем, созданным воздухом высокого давления.

Настоящие вертолеты при возникновении эффекта земли теряют устойчивость, управлять ими сложно. Поведение аппарата можно сравнить с поведением человека, оказавшегося на большом шаре. Радиоуправляемые модели также могут испытывать проблемы с устойчивостью, находясь на небольшом удалении от поверхности, однако однозначного мнения на этот счет нет. Некоторые моделисты утверждают, что ничего подобного не наблюдали либо эффект был слабо выражен.

Большое значение имеет ветер. Если он сильный, то воздух высокого давления выдувается из-под радиоуправляемого вертолета, влияние эффекта заметно уменьшается, управлять моделью проще.

Подъем и снижение

При зависании вертолета над землей подъемная сила, развиваемая лопастями ротора, равняется весу летательного аппарата. Чтобы радиоуправляемый беспилотник поднялся выше, необходимо увеличить подъемную силу, то есть она должна стать больше веса. Для снижения ее нужно уменьшить.


Скорость подъема вертолета зависит от разницы между подъемной силой, развиваемой несущим винтом на максимальной мощности, и силой тяжести. Чем значительнее разница, тем быстрее поднимается летательный аппарат.

Для взлета рекомендуется выбирать горизонтальную поверхность. Почему управлять на ней аппаратом легче? Все дело в том, что при подъеме с наклонной поверхности диск вращения ротора также наклоняется, а подъемная сила разделяется на две составляющие: горизонтальную и вертикальную. Соответственно, горизонтальная составляющая силы будет перемещать радиоуправляемую модель в сторону наклона поверхности сразу после взлета.

Чтобы избежать дрейфа, следует находить для взлета ровную поверхность. Если же такой возможности нет, тогда управлять так: диск ротора наклонить в обратную углу наклона сторону, чтобы все-таки обеспечить вертикальный взлет. При этом ручку, чтобы управлять автоматом перекоса, следует перед отрывом переместить вправо, сразу после отрыва от земли вернуть в нейтральное положение.

Висение

При зависании модели на радиоуправлении в воздухе подъемная сила основного винта равна силе веса вертолета. Беспилотник не опускается и не поднимается, оставаясь в одной горизонтальной плоскости. Так как изменить в полете вес радиоуправляемой модели мы не в силах, нам остается управлять силой тяги (подъемной силой).


Управлять подъемной силой возможно через:

  • изменение общего шага (угла установки лопастей);
  • изменение количества оборотов.

Соответственно, есть две модели. В первой вариант, как управлять тягой, реализован через изменение угла установки лопастей. Это модель с общим шагом. Вторая модель с фиксированным шагом предполагает, что угол остается неизменным, а управлять тягой винта, изменяя ее, можно через регулирование количества оборотов.

Перемещение по горизонту и разворот

Разложив общий вектор подъемной силы несущего винта на составляющие, мы увидим, что он определяется суммой векторов тяги задней и передней лопасти. Оба этих вектора могут изменяться в зависимости от того, где находятся лопасти относительно продольной оси. Это дает возможность управлять вертолетом в горизонтальной плоскости.


Подъемная сила, образуемая задней частью диска вращения, оказывается выше, чем сила передней части. В результате нос опускается, тогда как хвостовая балка поднимается. Радиоуправляемая модель двигается вперед.

При движении вперед подъемная сила (вернее, ее вертикальная составляющая) по-прежнему равняется весу радиоуправляемого аппарата. Что касается горизонтальной составляющей, то ее увеличение или уменьшение определяет величину тягу в горизонтальном направлении.

Управлять направлением полета в горизонтальной плоскости можно с помощью ручки перекоса:

  1. Ее можно передвинуть вперед, аппарат перекоса наклонится вперед (нос опустится).
  2. Для выравнивания автомата нужно вернуть ручку в нейтральное положение.
  3. Наклонив ручку назад, вы наклоняете аппарат назад (нос поднимается).

Для того чтобы выполнить разворот, радиоуправляемую модель необходимо накренить.

Предположим, что мы хотим развернуть летательный аппарат вправо. Как управлять вертолетом в этом случае? Вектор силы веса по-прежнему остается перпендикулярным земле, тогда как вектор подъемной силы перпендикулярен диску вращения и наклонен вправо по отношению к горизонтальной поверхности на некий угол. В результате вертикальная составляющая вектора подъемной силы все также противодействует силе веса, а горизонтальная составляющая начинает толкать модель вправо, тем самым разворачивая ее.

Так как беспилотник выполняет поворот, будучи наклоненным в одну из сторон, значение вертикальной составляющей вектора силы уменьшается и становится меньше веса, зато появляется горизонтальная составляющая. При этом вес радиоуправляемого аппарата остается неизменным. Если все оставить, как есть, то при каждом повороте вертолет будет снижаться, что нас вряд ли устраивает, если мы хотим оставаться в одной горизонтальной плоскости.

В этом случае управлять следует так: необходимо увеличить подъемную силу с помощью ручки управления тангажем. Нужно переместить нос вверх, чтобы сделать больше угол атаки несущего винта.

Крен и боковое перемещение


Изменением подъемной силы разных сторон ротора можно управлять креном вертолета влево или вправо. Для совершения крена необходимо переместить ручку управления аппаратом перекоса влево или вправо. Радиоуправляемый аппарат начнет наклоняться, вместе с ним будет совершать крен и модель.

Гироскопическая прецессия

Ротор радиоуправляемого вертолета по своему поведению похож на гироскоп, это означает, что ему присуща гироскопическая прецессия.

Из-за этого явления лопасть с уменьшенным шагом и лопасть с возросшим шагом окажутся на минимальном и максимальном отклонении от горизонтальной плоскости, сделав поворот на 90 градусов.

Когда лопасть оказывается перпендикулярно продольной оси летательного аппарата над хвостовой балкой, она демонстрирует максимальный взмах и тягу. В этот момент устанавливается максимальный шаг, что позволяет успешно управлять моделью, то есть выполнить ее наклон вперед.

Подъемная сила при косом обтекании

При горизонтальном полете подъемная сила становится больше благодаря увеличению скорости воздушного потока и увеличению количества воздуха, проходящего через пропеллеры.


При перемещении радиоуправляемого беспилотника в горизонтальной плоскости возникает дополнительная подъемная сила при так называемом косом обтекании. И она зависит от горизонтальной скорости модели. Чем быстрее летит радиоуправляемый вертолет, тем существеннее сила. Ее легко распознать, так как происходит заметное улучшение летных характеристик.

Сила от перемещения возникает и при зависании на одном месте при условии, что дует ветер. Можно уменьшить мощность двигателя, тем самым сэкономив заряд батареи. Впрочем, если ветер порывистый, управлять летательным аппаратом сложно, так как приходится постоянно компенсировать то возрастающую, то уменьшающуюся силу. По этой причине управлять висением в воздухе лучше либо в полный штиль, либо при устойчивом ветре.

Авторотация

Под авторотацией понимается полет с остановленным двигателем. Вращение ротора вертолета происходит по инерции и благодаря действию воздуха, дополнительно раскручивающего лопасти при снижении радиоуправляемой модели.


При включенном двигателе воздушный поток оказывается нисходящим. Если же движок выключается в полете, снижение происходит с авторотацией, а воздушный поток становится восходящим.

Воздух переводит лопасти на отрицательный шаг, ротор продолжает вращение, вертолет может совершить управляемое снижение и приземлиться.

Не все радиоуправляемые модели обладают способностью к авторотации. Для этого в системе ротора должна быть установлена обгонная муфта, позволяющая лопастям свободно вращаться после остановки мотора. Возможность авторотации не является обязательной для летательных аппаратов. Однако в случаях, когда главный двигатель внезапно отказывает, ротор без авторотации останавливается, приземление происходит жестко, зачастую с повреждениями. Стремительная потеря высоты и быстрое снижение могут привести к печальным последствиям.

Рысканье

Под рысканием понимаются угловые движения радиоуправляемой модели относительно вертикальной оси. Упрощенно говоря, это повороты корпуса влево или вправо в горизонтальной плоскости.


Одной из причин того, почему для вертолетов на радиоуправлении рекомендуются специальные пульты, как раз и является возможность быстро управлять рысканьем, компенсируя его. Можно использовать и стандартную аппаратуру от радиоуправляемых квадрокоптеров или самолетов, однако вам придется вручную управлять скоростью вращения лопастей хвостового ротора, чтобы удерживать нос летательного аппарата прямо.

В обычных пультах такой возможности нет, поэтому каждый раз, когда вы будете поднимать или опускать вертолет, придется вручную управлять тягой. То есть увеличивать или уменьшать тягу хвостового ротора, чтобы компенсировать увеличение или уменьшение реактивного момента. Это не очень удобно, хотя и несмертельно. В пультах для радиоуправляемых вертолетов все гораздо удобнее, так как есть:

  • ручка, чтобы управлять тангажом;
  • ручка, чтобы управлять дросселем;
  • кнопки для снижения и для подъема.

Как избежать аварий: частые проблемы

У начинающих пилотов первые запуски обычно завершаются или падением, или не самым мягким приземлением. Как правило, летательные аппараты успешно переживают жесткую посадку благодаря прочному корпусу и раме, однако у любой радиоуправляемой техники есть предел.


Очередная авария вполне может завершиться походом за запчастями или даже за новым радиоуправляемым вертолетом. Именно поэтому так важно научиться правильно им управлять.

Не взлетает

Вертолет радиоуправляемый может не взлетать по нескольким причинам.

В первую очередь проверьте аккумулятор. Если он разряжен, у двигателя не хватит мощности, чтобы поднять летательный аппарат в воздух. Большие радиоуправляемые модели в этом отношении особенно чувствительны, так как их двигателям нужно много энергии для взлета.

Еще одной причиной того, почему модель не может взлететь, а вы ей управлять, являются изношенные шестерни в системе привода. Внимательно осмотрите систему: если такие шестерни обнаружатся, замените их.

Крутится на месте

Бывает и так, что лопасти вращаются с необходимой скоростью, но радиоуправляемый вертолет не взлетает, крутится на одном месте, заносится в сторону.

МИ-1. Первый серийный вертолет в СССР.

А действительно интересно, ? Как этот удивительный (без преувеличения) летательный аппарат не только держится в воздухе, но и красиво летает. Еще как красиво! Я неоднократно был свидетелем пилотажа серийного боевого вертолета МИ-24 над аэродромом города Бжег в Польше. Вертолет уже заслуженный ветеран, но грозная боевая машина, отлично зарекомендовавшая себя в Афганистане, и летает так, что дух захватывает, и взгляд оторвать от этого действа невозможно.

Так что же позволяет ей это делать? Ведь вроде бы несуразный по сравнению с самолетом летательный аппарат. Рискуя в который раз повторить самого себя скажу, что на самом деле принцип полета вертолета достаточно прост. И кое-что для его объяснения мы уже знаем.

Слышали, наверное, расхожее выражение «винтокрылая машина»? Оно достаточно правильное. Самолет держит в воздухе крыло, а у вертолета эти функции выполняет винт большого диаметра. Его называют несущим винтом. Каждая лопасть несущего винта представляет собой, по сути дела, крыло, имеющее аэродинамический профиль, и движущееся при вращении винта в воздушном потоке. Вот, пожалуй, принципиально и все:-). Что при этом происходит с крылом мы с Вами уже разобрались и . Возникает аэродинамическая сила, приложенная к каждой лопасти и, как их сумма, общая сила приложенная к винту и через него ко всему вертолету. Сила эта всегда перпендикулярна плоскости вращения винта.

Силы, действующие на вертолет.

Если она направлена вверх и больше веса вертолета, то он поднимается вертикально, если она равна весу, то он зависает в воздухе. Просто, неправда ли? Но теперь Вы вправе спросить, а как же вертолет двигается вперед? Ведь никакого горизонтального винта, как, например у винтового самолета у него нет и реактивного двигателя тоже. Что же создает ему тягу?

Как всегда все элементарно:-). Эту роль выполняет все тот же несущий винт. Если плоскость вращения винта наклонить, то вместе с ней наклонится и суммарная аэродинамическая сила. И теперь ее можно будет разложить на две составляющие: вертикальную, которая поднимает вертолет вверх и держит его в воздухе и горизонтальную, которая заставляет его двигаться вперед. Хотя правильней сказать не вперед, а туда, куда она направлена. Можно и вбок или назад, что вертолет с успехом и делает, кстати.

Вот, собственно, и все. На вопрос о том, мы ответили. Конечно теория и практика этого вопроса значительно сложнее, но общий принцип полета именно таков.

Скажу, что на самом деле несущий винт вместе с массивной осью и тяжелыми сопутствующими механизмами никуда не отклоняется. Это, мягко говоря, трудно осуществимо и технически нецелесообразно. И тем не менее плоскость вращения винта наклоняется. Говоря вертолетным языком создается «перекос винта». Достигается он за счет изменения положения лопастей, которые подвешены к оси на специальных шарнирах, а управляет этим процессом специальное устройство, называемое « ». Все, вертолет полетел… И именно туда, куда нам нужно.

КА-52 Аллигатор. Хвостового винта нет.

Всех эти заумных понятий мы еще очень популярно (и незаумно:-))коснемся в дальнейших наших разговорах, а сейчас я напоследок еще упомяну об одной необходимой вещи. Вы наверняка все видели у вертолетов маленький хвостовой винт и задавали себе вопрос: «Для чего он?». Отвечаю. Я думаю все, даже ярые нелюбители физики слышали про три закона Ньютона. А если не слышали, то поверьте мне на слово, я знаю, что говорю:-). Так вот третий закон в популярной форме гласит: «Каждое действие равно противодействию.» Именно согласно этому выражению возникает так называемый реактивный момент. То есть если несущий винт вертолета вращается, например, вправо, этот момент будет стремиться повернуть корпус вертолета влево (или же наоборот). Чтобы устранить эту совсем ненужную тенденцию и существует хвостовой винт. Он работает, как обычный тянущий и, создавая тягу, обратную реактивному моменту просто его уравновешивает. А если вертолету нужно повернуть, то тяга этого винта меняется за счет поворота его лопастей.

Есть достаточно вертолетов без хвостового винта. Это, например, всем известные КА-50 и КА-52 . Но у них на одной оси как бы два несущих винта. И вращаются они в разные стороны, тем самым уравновешивая вредный реактивный момент.

Все. Сказано уже более чем достаточно. Теперь если Вас спросят , Вы без труда сможете на этот вопрос ответить. И я Вам советую присмотреться к современным типам этого летательного аппарата. Они сейчас развились в некий тип, стоящий в определенном смысле особняком от традиционной авиации и иной раз просто завораживают своим видом и своими возможностями… Хотя, впрочем, продолжение следует…

P.S. Напоследок маленький ролик с участием МИ-24 . Не российского, к сожалению. Вот так люди заботятся о технике, тем более такой заслуженной. Второй ролик – пилотаж Ми-24.

Фото и картинки кликабельны.