Цинковые сплавы в своем составе содержат такие металлы, как цинк, алюминий, медь и магний. В производстве и быту они применяются для изготовления сувениров, посуды, подшипников, оргтехники, конструкционных механизмов. Они используются в машиностроении, в сфере электромашиностроения и автомобильной промышленности.

Титановые сплавы

Титановые сплавы могут состоять из разнообразных металлов, в основном из , ванадия, титана, молибдена, марганца, хрома, меди, и никеля. Они широко применяются в производстве конструкционных материалов, авиационном строительстве, ракетостроении, в космическом машиностроении, для производства химической посуды и аппаратуры.

Алюминиевые сплавы

Сплавы алюминия в своем составе могут содержать алюминий, магний, медь, цинк, марганец, литий и бериллий. В связи со своей коррозионной стойкостью, сплавы алюминия нашли свое применение в производстве корпусов самолетов и техники, машиностроении, изготовлении электротехнических устройств и материалов, посуды, облицовочных панелей, дверей и электрических кабелей.

Железные, или железоуглеродистые сплавы в своем составе содержат другие металлы и неметаллические элементы. Для производства стали, чугуна или ферросплавов применяется железо, углерод, сера, фосфор, марганец, азот, хром, никель, молибден, титан, кобальт и вольфрам. Сплавы железа применяются практически во всех отраслях производства, в области конструкционных материалов, хозяйстве, машиностроении, при производстве инструментов, приборов и деталей.

Медные сплавы

Сплавы меди могут иметь в своем составе цинк, олово, никель, алюминий, бериллий и фосфор. Они нашли широкое применение в отраслях изготовления труб, теплотехнической аппаратуры, подшипников, и втулок, деталей, точных приборов. Также сплавы меди применяются в декоративно-прикладном искусстве и скульптуре.

Твердые сплавы

Твердыми называются сплавы, которые в своем составе содержат карбиды металлов кобальта, никеля, стали и молибдена. Они имеют высокую тугоплавкость, твердость, устойчивость к коррозии, а также износоустойчивость. Применяются твердые сплавы в изготовлении инструментов для обработки , сплавов и твердых неметаллов, как напайки для рабочих частей буровых агрегатов и как конструкционные материалы.

Все слышали слово «сплав», а некоторые считают его синонимом термина «металл». Но эти понятия различны. Металлы - это группа характерных химических элементов, тогда как сплав - продукт их соединения. В чистом виде металлы практически не используются, к тому же их сложно получить в чистом виде. Тогда как сплавы распространены повсеместно.

Что такое сплав

Давайте рассмотрим этот вопрос подробнее. Итак, сплав - это соединение нескольких металлов или одного и различных неметаллических добавок. Такие соединения используются повсеместно. Сплав - это макроскопическая однородная система, полученная методом плавления. Они были известны еще с самых древних времен, когда человечество при помощи примитивных технологий научилось производить чугун, бронзу, а немного позже - сталь.

Производство и использование этих материалов обусловлено тем, что можно получить сплав с заданными технологическими свойствами, при этом многие характеристики (прочность, твердость, коррозионная стойкость и другие) выше, чем у отдельных его компонентов.

Основные виды

Как классифицируют сплавы? Это делают по типу металла, который является основой соединения, а именно:

  1. Черные. Основа - железо. К черным сплавам относятся все виды сталей и чугунов.
  2. Цветные. Основа - один из Самые распространенные цветные сплавы - на основе меди и алюминия.
  3. Сплавы редких металлов. На основе ванадия, ниобия, тантала, вольфрама. Применяются преимущественно в электротехнике.
  4. Сплавы радиоактивных металлов.

К основному компоненту в сплав добавляют другие элементы - металлы и неметаллы, которые улучшают его технологические свойства. Эти добавки называют легирующими. Также в сплавах присутствуют вредные примеси - при превышении их допустимого значения у материала снижаются многие характеристики. Итак, теперь вы знаете, что такое сплав.

Сплавы также классифицируют на двойные, тройные и другие - по числу компонентов. По однородности структуры - на гомогенные и гетерогенные. По отличительным свойствам - на легкоплавкие и тугоплавкие, высокопрочные, жаростойкие, антифрикционные, коррозионностойкие и материалы со специальными свойствами.

Механические свойства

Механические свойства сплавов определяют работоспособность материала при воздействии на него внешних сил. Для того чтобы выяснить характеристики соединения, образец подвергают различным испытаниям (растягивают, царапают, нагружают, вдавливают в него металлический шарик или алмазный конус, изучают под микроскопом) на определение прочности, упругости, пластичности.

Физические

Состав сплава определяет его физические свойства. К ним относят удельный вес, электропроводность, температуру плавления, удельную теплоемкость, коэффициент объемного и линейного расширения. Также к физическим относятся магнитные свойства сплавов. Они характеризуются остаточной индукцией и магнитной проницаемостью.

Химические

Что такое химические свойства сплава? Это характеристики, определяющие, как материал реагирует на воздействие различных активных, в том числе и агрессивных средств. Химическое воздействие среды можно увидеть визуально: железо «съедает» ржавчина, на бронзе появляется зеленый налет оксидов, сталь растворяется в серной кислоте.

В металлургии и тяжелом машиностроении применяется множество способов борьбы с агрессивным влиянием внешней среды: разрабатываются новые, более стойкие материалы на основе меди, титана и никеля, сплавы покрывают защитными слоями - лаками, красками, окисными пленками, улучшают их структуру. В результате негативных факторов среды промышленность ежегодно терпит ущерб, исчисляемый миллионами тонн стали и чугуна.

Технологические

Технологичность - это что такое? Сплав в промышленности нужен не сам по себе, из него изготавливают какую-либо деталь. Следовательно, материал будут нагревать, резать, деформировать, подвергать термической обработке и проводить другие манипуляции. Технологичность - это способность сплава подвергаться разным способам горячей и холодной обработки, например плавиться, легко растекаться и заполнять литейную форму, деформироваться в горячем или холодном виде (ковка, горячая и холодная штамповка), свариваться, обрабатываться металлорежущим инструментом.

Технологические свойства можно разделить на:

  1. Литейные. Они характеризуются жидкотекучестью - способностью заполнять форму для литья, усадкой (процент потери объема после охлаждения, отвердевания) и ликвацией - сложным процессом, при котором образуется неоднородная структура материала в разных частях отливки.
  2. способность сплава деформироваться под ударной нагрузкой и принимать нужную форму без потери целостности. Некоторые металлы обладают хорошей ковкостью только в горячем виде, другие - в холодном и в горячем состоянии. Например, сталь куют в раскаленном виде. Сплавы алюминия и латунь хорошо принимают нужную форму при комнатной температуре. Бронза плохо поддается ударной деформации, а чугуны не пластичны и под воздействием молота разрушаются (за исключением
  3. Свариваемость. Хорошей свариваемостью обладает гораздо хуже эта характеристика у и чугунов.

Чтобы разобраться в классификации металлов, необходимо дать им определение. К металлам принято относить простые элементы, обладающие характерными признаками. Основополагающим признаком для них является отрицательный температурный коэффициент электрической проводимости. Это значит, что при повышении температуры, электрическая проводимость металлических проводников понижается, а при низких температурах, некоторые проводники наоборот переходят в состояние сверхпроводников. В то же время у неметаллов, этот коэффициент либо нейтрален, либо является положительным.

К числу второстепенных признаков следует относить металлический блеск, пластичность, высокую плотность, высокую температуру плавления, высокую теплопроводность и электропроводность. Кроме того большинство металлов в окислительно-восстоновительных реакциях выполняют роль восстановителя, то есть отдают свои электроны, а сами при этом окисляются. Но этот ряд признаков не является решающим, так как для многих химических элементов данного типа, они могут быть диаметрально противоположными. Более того, вероятно, любые неметаллы, при высоком давлении могут проявлять свойства металлов.

Чистые металлы встречаются в природе очень редко и на протяжении истории люди относили к металлам не только простые вещества, но руды и самородки, которые могут включать в себя другие химические элементы. Поэтому в более широком смысле к металлам относятся:

  • Очищенные от прочих включений металлы;
  • Сплавы;
  • Метллиды (сложные соединения, в том числе с неметаллами);
  • Интерметаллиды (соединения металлов, часто образующие очень прочные, тугоплавкие и твёрдые структуры).

Мы можем только попытаться дать классификацию данных объектов, но единой картины предложить по этому поводу невозможно, так как во многом она будет зависеть от профессиональной точки зрения, удобной для применения в той или иной научной или производственной области. На самом же элементарном уровне классификация даётся в периодической системе элементов, но даже в химии существуют разногласия по этому поводу.

В химии принято классифицировать металлы по количеству уровней электронной оболочки атомов и конечному уровню заполнения оболочки электронами. По этому признаку вещества делятся на –s –p -f -d металлы. Кроме того различают щелочные, щелочноземельные, переходные и постпереходные металлы. Но данная классификация неприменима в больше случаев, так как не затрагивает многие важные утилитарные вопросы, которые интересуют, прежде всего, науку металлургию.

Классификация по структуре кристаллической решётки

Очевидными являются различия в строении кристаллической решётки для различных металлов в твёрдом состоянии. Для них характерно наличие одного из трёх типов устройства:

  • Объёмоцентрированная кубическая решётка с 8 равноудалёнными атомами от взятого в качестве точки отсчёта атома и ещё 6 соседями на большем расстоянии;
  • Плотноупакованная кубическая решётка с 12 равноудалёнными соседями;
  • Плотноупакованная гексагональная решётка с 12 равноудалёнными соседями.

Для металлов в расплавленном и газообразном состоянии эти свойства не играют большой роли, так как кристаллическая структура атомов в этих состояниях становится неупорядоченной.

Техническая классификация

Наиболее распространённой и простой в усвоении на практическом уровне является абстрактная техническая классификация металлов, которая позаимствовала многие понятия из той же химии и геологии. Можно представить эту классификацию подобным образом:

  • Чёрные металлы - металлы и сплавы на основе Fe, или самые распространённые в производстве;
    • Железные металлы,
    • Тугоплавкие,
    • Урановые,
    • Редкоземельные,
    • Щелочноземельные и другие.
  • Цветные металлы – другие сплавы и металлы;
    • Тяжёлые (Сu, Sn Pb, Ni, Zn, а также Со, Bi, Sb, Cd, Hg),
    • Лёгкие (Mg, Аl, Ca),
    • Драгоценные (серебро, золото, платина и их сплавы),
    • Ферросплавные легирующие металлы (Mn, W, Cr, Nb, Mo, V и другие),
    • Редкие – радиоактивные и другие (U, Pu, Th).

Ниже приведено более наглядное представление данного списка в виде схемы.


К чёрным металлам относятся: сталь и чугун, а также другие сплавы на основе Fe.

К цветным металлам и сплавам, информацию о которых Вы можете узнать на нашем сайте, относятся:

Это самые распространённые в употреблении металлы и сплавы, которые применяются в различных областях промышленности и хозяйственной деятельности. Драгоценные же сплавы, на нашем сайте не представлены.

Данная классификация даёт более полное представление о металлах, но является неупорядоченной и нефункциональной. Наиболее утилитарный характер же носит классификация, принятая в металлургии, отражённая в нормативных документах ГОСТ и ТУ.

Классификация в ГОСТ

Наконец следует различать:

  • Литейные сплавы и металлы;
  • Деформируемые давлением;
  • Порошковые.

Из этой классификации уже становится видно, для каких целей служит тот или иной материал. Далее следует ещё более подробная классификация:

  • Металлы с хорошими антикоррозионными свойствами;
  • С хорошими антифрикционными свойствами;
  • Криогенные;
  • Магнитные и немагнитные;
  • Пружинные;
  • Пластичные металлы;
  • Автоматные сплавы для обработки на станках;
  • Ковочные сплавы;
  • Жаропрочные;
  • Свариваемые без ограничений или ограниченно свариваемые;
  • Лёгкие (для применения в авиационной промышленности);
  • С хорошей электропроводностью и теплопроводностью, и многие другие.

Кроме того различаются металлы по области применения:

  • Конструкционные сплавы и металлы – применяются при обшивок и несущих элементов конструкций;
  • Электротехнические – для изготовления деталей электротехники;
  • Инструментальные - для изготовления инструментов.

Всё же эти определения даются относительно в рамках сплавов на основе какого-то одного металла, или в рамках всего многообразия выбора, что нередко приводит к путанице. Поэтому полную картину можно получить, только при детальном сравнении различных сплавов. При этом важнейшими параметрами будут являться: прочность, упругость, вязкость, пластичность, твёрдость, теплопроводность и электропроводность. Кроме того следует различать номинальные характеристики и конструкционные свойства металлов. Например, прочность на растяжение не говорит о высокой конструкционной прочности, а при некоторых температурных значениях свойства металлов изменяются. Только опираясь на точный анализ можно прийти к заключению о целесообразности применения того или иного материала в тех или иных целях.

Как найти нужный сплав в классификаторе ГОСТ

Исчерпывающая информация касательно этих качеств и возможностей применения дана в государственных стандартах, на которые и следует опираться в дальнейшей работе. Чтобы найти нужную информацию, достаточно:

  • Определить основной элемент металла;
  • Сплав или металл будет рассматриваться;
  • Литейный, деформируемый давлением или порошковый;
  • И если Вы ещё не нашли нужного металла в классификаторе ГОСТ, нужно узнать про область применения металла и не является ли этот сплав специальным.

Словом, классификация металлов крайне сложна, и в зависимости от области применения разных материалов и будет образовываться определённая структура знаний. Поэтому в каждом конкретном случае, необходимо выбирать узкую понятийную сферу для определения видов металлов, чтобы не вникать во все подробности в целом.

В производственных процессах металлы в первозданном виде используются довольно редко. Для улучшения физико-химических свойств в их состав добавляют другие элементы. Но кроме добавок, существует большое количество сплавов – металлических материалов которые состоят из двух и более химических элементов.

Всего в промышленности и народном хозяйстве применяется более 5 000 различных сплавов. Сплавы являются основными конструкционными материалами. В промышленности наибольшее распространение получили сплавы на основе железа и алюминия.

По способу производства различают порошковые и литые сплавы. Литой сплав получается путем смешивания компонентов в жидком состоянии с последующей кристаллизацией. А компоненты порошкового сплава сначала смешивают, а потом запекают полученную смесь при высокой температуре.

Также сплавы разделяются на черные и цветные. Черные сплавы – это сплавы, в которых основным компонентом является железо. Наиболее востребованные черные сплавы – сталь и чугун. Оба эти сплава имеют два основных компонента – железо и углерод, но в стали содержится углерода намного меньше. Чугун более дешевый в производстве материал, к тому же довольно хрупкий, и применяется он в основном для изготовления изделий, не требующих пластичной обработки. Сталь напротив, отлично плавится, и поэтому получила более широкое распространение в промышленности. Кроме этого, благодаря легированию сталей, удалось значительно улучшить их эксплуатационные свойства. Сейчас .

Также очень распространены конструкционные сплавы на основе алюминия. Самым известным из них является дюралюминий. Этот сплав помимо основного элемента – алюминия, включает в себя медь, магний и марганец. Долевая часть всех этих компонентов не превышает 7%. Благодаря своей высокой прочности и малому весу, дюралюминий получил широкое применение в авиационной промышленности, ракетостроении и машиностроении.

Из цветных сплавов, помимо дюралюминия необходимо выделить бронзу и латунь. Бронза – самый первый сплав, который стал известен человечеству. Этот материал состоит из меди и олова. Олово здесь выступает в качестве легирующего элемента. Изобретение бронзы в корне изменило жизнь человечества, ведь на смену медному веку – пришел бронзовый. И на протяжении нескольких тысяч лет, бронза была самым востребованным материалом. После открытия стали, бронза утратила свое доминирующее значение. Сейчас этот сплав применяется в приборостроении, машиностроении и для изготовления предметов повседневного обихода.

Еще один известный сплав на основе меди – латунь. Только в качестве легирующего элемента здесь выступает цинк. Латунь долгое время использовалась в качестве заменителя золота, а сейчас широко применяется в приборостроении. Из латуни изготавливают различные детали химической аппаратуры, самолетов, судов, автомобилей.

Кроме вышеперечисленных широко применяются еще несколько сплавов. Для производства корпусов подшипника используются баббиты – сплавы свинца и олова. Для производства украшений и предметов домашнего обихода применяется мельхиор – сплав меди и никеля. Для изготовления режущих инструментов применяют сплав карбида вольфрама и кобальта – победит.

СПЛАВЫ
материалы, имеющие металлические свойства и состоящие из двух или большего числа химических элементов, из которых хотя бы один является металлом. Многие металлические сплавы имеют один металл в качестве основы с малыми добавками других элементов. Самый распространенный способ получения сплавов - затвердевание однородной смеси их расплавленных компонентов. Существуют и другие методы производства - например, порошковая металлургия. В принципе, четкую границу между металлами и сплавами трудно провести, так как даже в самых чистых металлах имеются "следовые" примеси других элементов. Однако обычно под металлическими сплавами понимают материалы, получаемые целенаправленно добавлением к основному металлу других компонентов. Почти все металлы, имеющие промышленное значение, используются в виде сплавов (см. табл. 1, 2). Так, например, все выплавляемое железо почти целиком идет на изготовление обычных и легированных сталей, а также чугунов. Дело в том, что сплавлением с некоторыми компонентами можно существенно улучшить свойства многих металлов. Если для чистого алюминия предел текучести составляет всего лишь 35 МПа, то для алюминия, содержащего 1,6% меди, 2,5% магния и 5,6% цинка, он может превышать 500 МПа. Аналогичным образом могут быть улучшены электрические, магнитные и термические свойства. Эти улучшения определяются структурой сплава - распределением и структурой его кристаллов и типом связей между атомами в кристаллах.
См. также
МЕТАЛЛОВЕДЕНИЕ ФИЗИЧЕСКОЕ ;
ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ . Многие металлы, скажем магний, выпускают высокочистыми, чтобы можно было точно знать состав изготавливаемых из него сплавов. Число металлических сплавов, применяемых в наши дни, очень велико и непрерывно растет. Их принято разделять на две большие категории: сплавы на основе железа и сплавы цветных металлов. Ниже перечисляются наиболее важные сплавы промышленного значения и указываются основные области их применения.
Сталь. Сплавы железа с углеродом, содержащие его до 2%, называются сталями. В состав легированных сталей входят и другие элементы - хром, ванадий, никель. Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно было бы перечислить. Малоуглеродистая сталь (менее 0,25% углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55%) идет на изготовление таких низкоскоростных режущих инструментов, как бритвенные лезвия и сверла. Легированные стали находят применение в машиностроении всех видов и в производстве быстрорежущих инструментов.
См. также СТАНКИ МЕТАЛЛОРЕЖУЩИЕ .
Чугун. Чугуном называется сплав железа с 2-4% углерода. Важным компонентом чугуна является также кремний. Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей. В правильно выполненных отливках достигаются хорошие механические свойства материала.
См. также МЕТАЛЛЫ ЧЕРНЫЕ .
Сплавы на основе меди. В основном это латуни, т.е. медные сплавы, содержащие от 5 до 45% цинка. Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), а с содержанием 20-36% Zn - желтой (альфа-латунью). Латуни применяются в производстве различных мелких деталей, где требуются хорошая обрабатываемость и формуемость. Сплавы меди с оловом, кремнием, алюминием или бериллием называются бронзами. Например, сплав меди с кремнием носит название кремнистой бронзы. Фосфористая бронза (медь с 5% олова и следовыми количествами фосфора) обладает высокой прочностью и применяется для изготовления пружин и мембран.
Свинцовые сплавы. Обычный припой (третник) представляет собой сплав примерно одной части свинца с двумя частями олова. Он широко применяется для соединения (пайки) трубопроводов и электропроводов. Из сурьмяно-свинцовых сплавов делают оболочки телефонных кабелей и пластины аккумуляторов. Сплавы свинца с кадмием, оловом и висмутом могут иметь точку плавления, лежащую значительно ниже точки кипения воды (СПЛАВЫ70° C); из них делают плавкие пробки клапанов спринклерных систем противопожарного водоснабжения. Пьютер, из которого ранее отливали столовые приборы (вилки, ножи, тарелки), содержит 85-90% олова (остальное - свинец). Подшипниковые сплавы на основе свинца, называемые баббитами, обычно содержат олово, сурьму и мышьяк.
Легкие сплавы. Современная промышленность нуждается в легких сплавах высокой прочности, обладающих хорошими высокотемпературными механическими свойствами. Основными металлами легких сплавов служат алюминий, магний, титан и бериллий. Однако сплавы на основе алюминия и магния не могут применяться в условиях высокой температуры и в агрессивных средах.
Алюминиевые сплавы. К ним относятся литейные сплавы (Al - Si), сплавы для литья под давлением (Al - Mg) и самозакаливающиеся сплавы повышенной прочности (Al - Cu). Алюминиевые сплавы экономичны, легкодоступны, прочны при низких температурах и легко обрабатываемы (они легко куются, штампуются, пригодны для глубокой вытяжки, волочения, экструдирования, литья, хорошо свариваются и обрабатываются на металлорежущих станках). К сожалению, механические свойства всех алюминиевых сплавов начинают заметно ухудшаться при температурах выше приблизительно 175° С. Но благодаря образованию защитной оксидной пленки они проявляют хорошую коррозионную стойкость в большинстве обычных агрессивных сред. Эти сплавы хорошо проводят электричество и тепло, обладают высокой отражательной способностью, немагнитны, безвредны в контакте с пищевыми продуктами (поскольку продукты коррозии бесцветны, не имеют вкуса и нетоксичны), взрывобезопасны (поскольку не дают искр) и хорошо поглощают ударные нагрузки. Благодаря такому сочетанию свойств алюминиевые сплавы служат хорошими материалами для легких поршней, применяются в вагоно-, автомобиле- и самолетостроении, в пищевой промышленности, в качестве архитектурно-отделочных материалов, в производстве осветительных отражателей, технологических и бытовых кабелепроводов, при прокладке высоковольтных линий электропередачи. Примесь железа, от которой трудно избавиться, повышает прочность алюминия при высоких температурах, но снижает коррозионную стойкость и пластичность при комнатной температуре. Кобальт, хром и марганец ослабляют охрупчивающее действие железа и повышают коррозионную стойкость. При добавлении лития к алюминию повышаются модуль упругости и прочность, что делает такой сплав весьма привлекательным для авиакосмической промышленности. К сожалению, при своем превосходном отношении предела прочности к массе (удельной прочности) сплавы алюминия с литием обладают низкой пластичностью.
Магниевые сплавы. Магниевые сплавы легки, характеризуются высокой удельной прочностью, а также хорошими литейными свойствами и превосходно обрабатываются резанием. Поэтому они применяются для изготовления деталей ракет и авиационных двигателей, корпусов для автомобильной оснастки, колес, бензобаков, портативных столов и т.п. Некоторые магниевые сплавы, обладающие высоким коэффициентом вязкостного демпфирования, идут на изготовление движущихся частей машин и элементов конструкции, работающих в условиях нежелательных вибраций. Магниевые сплавы довольно мягки, плохо сопротивляются износу и не очень пластичны. Они легко формуются при повышенных температурах, пригодны для электродуговой, газовой и контактной сварки, а также могут соединяться пайкой (твердым), болтами, заклепками и клеями. Такие сплавы не отличаются особой коррозионной стойкостью по отношению к большинству кислот, пресной и соленой воде, но стабильны на воздухе. От коррозии их обычно защищают поверхностным покрытием - хромовым травлением, дихроматной обработкой, анодированием. Магниевым сплавам можно также придать блестящую поверхность либо плакировать медью, никелем и хромом, нанеся предварительно покрытие погружением в расплавленный цинк. Анодирование магниевых сплавов повышает их поверхностную твердость и стойкость к истиранию. Магний - металл химически активный, а потому необходимо принимать меры, предотвращающие возгорание стружки и свариваемых деталей из магниевых сплавов.
См. также СВАРКА .
Титановые сплавы. Титановые сплавы превосходят как алюминиевые, так и магниевые в отношении предела прочности и модуля упругости. Их плотность больше, чем всех других легких сплавов, но по удельной прочности они уступают только бериллиевым. При достаточно низком содержании углерода, кислорода и азота они довольно пластичны. Электрическая проводимость и коэффициент теплопроводности титановых сплавов малы, они стойки к износу и истиранию, а их усталостная прочность гораздо выше, чем у магниевых сплавов. Предел ползучести некоторых титановых сплавов при умеренных напряжениях (порядка 90 МПа) остается удовлетворительным примерно до 600° C, что значительно выше температуры, допустимой как для алюминиевых, так и для магниевых сплавов. Титановые сплавы достаточно стойки к действию гидроксидов, растворов солей, азотной и некоторых других активных кислот, но не очень стойки к действию галогеноводородных, серной и ортофосфорной кислот. Титановые сплавы ковки до температур около 1150° C. Они допускают электродуговую сварку в атмосфере инертного газа (аргона или гелия), точечную и роликовую (шовную) сварку. Обработке резанием они не очень поддаются (схватывание режущего инструмента). Плавка титановых сплавов должна производиться в вакууме или контролируемой атмосфере во избежание загрязнения примесями кислорода или азота, вызывающими их охрупчивание. Титановые сплавы применяются в авиационной и космической промышленности для изготовления деталей, работающих при повышенных температурах (150-430° C), а также в некоторых химических аппаратах специального назначения. Из титанованадиевых сплавов изготавливается легкая броня для кабин боевых самолетов. Титаналюминиевованадиевый сплав - основной титановый сплав для реактивных двигателей и корпусов летательных аппаратов. В табл. 3 приведены характеристики специальных сплавов, а в табл. 4 представлены основные элементы, добавляемые к алюминию, магнию и титану, с указанием получаемых при этом свойств.
Бериллиевые сплавы. Пластичный бериллиевый сплав можно получить, например, вкрапляя хрупкие зерна бериллия в мягкую пластичную матрицу, такую, как серебро. Сплав этого состава удалось холодной прокаткой довести до толщины, составляющей 17% первоначальной. Бериллий превосходит все известные металлы по удельной прочности. В сочетании с низкой плотностью это делает бериллий пригодным для устройств систем наведения ракет. Модуль упругости бериллия больше, чем у стали, и бериллиевые бронзы применяются для изготовления пружин и электрических контактов. Чистый бериллий используется как замедлитель и отражатель нейтронов в ядерных реакторах. Благодаря образованию защитных оксидных слоев он устойчив на воздухе при высоких температурах. Главная трудность, связанная с бериллием, - его токсичность. Он может вызывать серьезные заболевания органов дыхания и дерматит.
См. также КОРРОЗИЯ МЕТАЛЛОВ и статьи по отдельным металлам.
ЛИТЕРАТУРА
Коротич В.И., Братчиков С.Г. Металлургия черных металлов. М., 1987
Диаграммы фаз в сплавах. М., 1986
Юдкин В.С. Производство и литье сплавов цветных металлов. М., 1967-1971
Вагнер К. Термодинамика сплавов. М., 1957

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "СПЛАВЫ" в других словарях:

    СПЛАВЫ - СПЛАВЫ, застывшие растворы металлов друг в друге. Вследствие появления у С. целого ряда новых свойств, отсутствующих у чистых металлов, вошедших в их состав, С. получили большое распространение и применение в технике. При сплавлении металлов… … Большая медицинская энциклопедия

    Металлические, макроскопические однородные системы, состоящие из двух (например, латунь) или более металлов (реже металлов и неметаллов, например сталь) с характерными металлическими свойствами. В широком смысле сплавы любые однородные системы,… … Современная энциклопедия

    СПЛАВЫ, материалы, представляющие собой сочетание двух или более металлов. Свойства сплава отличаются от свойств исходных элементов. Сплавы обычно тверже и прочнее, и у них более низкая точка плавления. Сочетания с наиболее низкой точкой… … Научно-технический энциклопедический словарь

    Макроскопически однородные в ва, получаемые сплавлением двух или более металлов, неметаллов, окислов, органич. в в и т. п. Особенно важную роль в технике играют металлич. С. (основной вид конструкц. материалов). В общем случае С. не являются… … Физическая энциклопедия

    СПЛАВЫ - макроскопически однородные вещества, образованные в результате охлаждения и затвердевания высокотемпературных жидких систем, состоящих из двух или нескольких компонентов (химически индивидуальных веществ), а также полученные методом (см.). С.… … Большая политехническая энциклопедия

    Металлические макроскопические однородные системы, состоящие из двух или более металлов (реже металлов и неметаллов), с характерными металлическими свойствами. В широком смысле сплавами называют любые однородные системы, полученные сплавлением… … Большой Энциклопедический словарь

    I Сплавы металлов, металлические сплавы, твёрдые и жидкие системы, образованные главным образом сплавлением двух или более металлов (См. Металлы), а также металлов с различными неметаллами. Термин «С.» первоначально относился к материалам … Большая советская энциклопедия

    Сплавы - однородные системы из двух или более элементов, претерпевающие переход из жидкое в твердое агрегатное состояния и обладающие характерными металлическими свойствами. Первые сплавы были природно легированными, их состав и свойства… … Энциклопедический словарь по металлургии

    Макроскопические однородные системы, состоящие из двух или более металлов (реже металлов и неметаллов) с характерными металлич. св вами. В более широком смысле С. любые однородные системы, полученные сплавлением металлов, неметаллов, неорг. соед … Химическая энциклопедия

    - (хим.). До самого последнего времени о природе С. не существовало точных и верных представлений и они вместе с растворами, стеклами и изоморфными смесями относились к классу неопределенных химических соединений. В настоящее время с очевидностью… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона